Development of salinity tolerant version of a popular rice variety improved white ponni through marker assisted back cross breeding

  • Muthu Valarmathi
  • Ramasamy Sasikala
  • Hifzur Rahman
  • Nallathambi Jagadeeshselvam
  • Rohit Kambale
  • Muthurajan RaveendranEmail author
Original Article


Salinity is one of the major abiotic stress limiting rice productivity under marginal environments. The progress in development of salinity tolerant rice varieties is slow due to complex nature of tolerance mechanisms determining performance under salinity. In the present study, efforts were taken to generate NILs of a popular rice genotype Improved White Ponni exhibiting increased tolerance against salinity through marker assisted introgression of ‘Saltol’, a major effect QTL of FL478. IWP-Satol NILs exhibited enhanced tolerance against salinity under hydroponic conditions. MABB approach accelerated the development of NILs with high recovery of recurrent parent genome within 2–3 backcrosses. Genotyping and phenotyping of BC3F1 progenies resulted in the identification of elite NILs of IWP harboring Saltol loci and possessing > 90% of recurrent parent genome recovery. Selected NILs viz., 5-35, 5-36 and 5-45 that carried the Saltol loci were screened under field conditions for their agronomic traits. NIL # 5-36 exhibited superior agronomic performance (58% increased yield over IWP under saline conditions) and superior grain/cooking quality traits than that of IWP.


Rice Salinity tolerance Saltol MABB FL478 



Funding support provided by Department of Biotechnology, Government of India (Grant No. BT/PR13454/COE/34/43/2015) is greatly acknowledged.


  1. Ahmadizadeh, M., Vispo, N. A., Calapit-Palao, C. D. O., Pangaan, I. D., Viña, C. D., & Singh, R. K. (2016). Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Indian Journal of Plant Physiology, 21(4), 528–536.CrossRefGoogle Scholar
  2. Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y. S., et al. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications, 7, 13342.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Babu, N. N., Krishnan, S. G., Vinod, K., Krishnamurthy, S., Singh, V. K., Singh, M. P., et al. (2017). Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa ‘Pusa basmati 1121’. Frontiers in plant science, 8, 41.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chaudhary, R. C. (1996). Standard evaluation system for rice. Manila: International Rice Research Institute.Google Scholar
  5. Chen, S., Lin, X., Xu, C., & Zhang, Q. (2000). Improvement of bacterial blight resistance of Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Science, 40, 239–244.CrossRefGoogle Scholar
  6. Chen, S., Xu, C., Lin, X., & Zhang, Q. (2001). Improving bacterial blight resistance of ‘6078’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breeding, 120(2), 133–137.CrossRefGoogle Scholar
  7. Dhivyapriya, D., Ramchander, S., Kalamani, A., Raveendran, M., Jeyaprakash, P., & Robin, S. (2017). Evaluation of Saltol QTL introgression in rice: a study on co-existence of salinity tolerance and phytoremediation effect. International Journal of Current Microbiology and Applied Sciences, 6(12), 303–309.CrossRefGoogle Scholar
  8. Dixit, S., Yadaw, R. B., Mishra, K. K., & Kumar, A. (2017). Marker-assisted breeding to develop the drought-tolerant version of Sabitri, a popular variety from Nepal. Euphytica, 213(8), 184.CrossRefGoogle Scholar
  9. Ellur, R. K., Khanna, A., Bhowmick, P. K., Vinod, K., Nagarajan, M., Mondal, K. K., et al. (2016). Marker-aided incorporation of Xa38, a novel bacterial blight resistance gene, in PB1121 and comparison of its resistance spectrum with xa13 + Xa21. Scientific Reports, 6, 29188.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gregorio, G., & Senadhira, D. (1993). Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 86(2–3), 333–338.PubMedCrossRefGoogle Scholar
  11. Gregorio, G. B., Senadhira, D., & Mendoza, R. D. (1997). Screening rice for salinity tolerance. IRRI discussion paper series.Google Scholar
  12. Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463–499.CrossRefGoogle Scholar
  13. Ho, V. T., Thomson, M. J., & Ismail, A. M. (2016). Development of salt tolerant IR64 near isogenic lines through marker-assisted breeding. Journal of Crop Science and Biotechnology, 19(5), 373–381.CrossRefGoogle Scholar
  14. Hossain, H., Rahman, M., Alam, M., & Singh, R. (2015). Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. Journal of Agronomy and Crop Science, 201(1), 17–31.CrossRefGoogle Scholar
  15. Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65(4), 547–570.PubMedCrossRefGoogle Scholar
  16. Linh, L. H., Linh, T. H., Xuan, T. D., Ham, L. H., Ismail, A. M., & Khanh, T. D. (2012). Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the Red River Delta of Vietnam. International Journal of Plant Genomics. Scholar
  17. Moore, D., & Dennis, D. (2002). Preparation and analysis of DNA. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, & K. Struhl (Eds.), Current protocols in molecular biology (pp. 1–2). USA: John Wiley & Sons.Google Scholar
  18. Moradi, F., Ismail, A. M., Gregorio, G. B., & Egdane, J. A. (2003). Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian Journal of Plant Physiology, 8, 276–278.Google Scholar
  19. Nagarajan, M., Singh, N., Prabhu, K. V., & Singh, A. (2014). Marker based haplotype diversity of Saltol OTL in relation to seedling stage salinity tolerance in selected genotypes of rice. Indian Journal of Genetics, 74(1), 16–25.Google Scholar
  20. Neeraja, C., Maghirang-Rodriguez, R., Pamplona, A., Heuer, S., Collard, B. C., Septiningsih, E. M., et al. (2007). A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theoretical and Applied Genetics, 115(6), 767–776.PubMedCrossRefGoogle Scholar
  21. Platten, J. D., Cotsaftis, O., Berthomieu, P., Bohnert, H., Davenport, R. J., Fairbairn, D. J., et al. (2006). Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science, 11(8), 372–374.PubMedCrossRefGoogle Scholar
  22. Platten, J. D., Egdane, J. A., & Ismail, A. M. (2013). Salinity tolerance, Na+ exclusion and allele mining of HKT1; 5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism? BMC Plant Biology, 13(1), 32.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Rahman, M. A., Bimpong, I. K., Bizimana, J. B., et al. (2017). Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice, 10(1), 47.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Rahman, H., Dakshinamurthi, V., Ramasamy, S., Manickam, S., Kaliyaperumal, A. K., Raha, S., et al. (2018). Introgression of submergence tolerance into CO 43, a popular rice variety of India, through marker-assisted backcross breeding. Czech Journal of Genetics and Plant Breeding, 54(3), 101–108.CrossRefGoogle Scholar
  25. Rahman, H., Jagadeeshselvam, N., Valarmathi, R., Sachin, B., Sasikala, R., Senthil, N., et al. (2014). Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Molecular Biology, 85(4–5), 485–503.PubMedCrossRefGoogle Scholar
  26. Septiningsih, E. M., Hidayatun, N., Sanchez, D. L., Nugraha, Y., Carandang, J., Pamplona, A. M., et al. (2015). Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica, 202(2), 259–268.CrossRefGoogle Scholar
  27. Servin, B., & Hospital, F. (2002). Optimal positioning of markers to control genetic background in marker-assisted backcrossing. Journal of Heredity, 93(3), 214–217.PubMedCrossRefGoogle Scholar
  28. Servin, B., Martin, O. C., & Mézard, M. (2004). Toward a theory of marker-assisted gene pyramiding. Genetics, 168(1), 513–523.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ses, I. (2002). Standard evaluation system (pp. 11–30). Manila, Philippines: International Rice Research Institute.Google Scholar
  30. Shamsudin, N. A. A., Swamy, B. M., Ratnam, W., Cruz, M. T. S., Raman, A., & Kumar, A. (2016). Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics, 17(1), 30.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Singh, D., Kumar, A., Chauhan, P., Kumar, V., Kumar, N., Singh, A., et al. (2011). Marker assisted selection and crop management for salt tolerance: a review. African Journal of Biotechnology, 10(66), 14694–14698.CrossRefGoogle Scholar
  32. Singh, R. K., Redoña, E., & Refuerzo, L. (2009). Varietal improvement for abiotic stress tolerance in crop plants: special reference to salinity in rice. In A. Pareek, S. K. Sopory, H. J. Bohnert, & S. Govindjee (Eds.), Abiotic stress adaptation in plants (pp. 387–415). Berlin: Springer.CrossRefGoogle Scholar
  33. Singh, V. K., Singh, B. D., Kumar, A., Maurya, S., Krishnan, S. G., Vinod, K. K., et al. (2018). Marker-Assisted Introgression of Saltol QTL Enhances Seedling Stage Salt Tolerance in the Rice Variety “Pusa Basmati 1”. International Journal of Genomics. Scholar
  34. Singh, M., Singh, A., Nehal, N., & Sharma, N. (2018a). Effect of proline on germination and seedling growth of rice (Oryza sativa L.) under salt stress. Journal of Pharmacognosy and Phytochemistry, 7(1), 2449–2452.Google Scholar
  35. Singh, V. K., Singh, A., Singh, S., Ellur, R. K., Singh, D., Gopala Krishnan, S., et al. (2013). Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR 78’. Plant Breeding, 132(5), 486–495.Google Scholar
  36. Tahjib-Ul-Arif, M., Sayed, M. A., Islam, M. M., Siddiqui, M. N., Begum, S., & Hossain, M. A. (2018). Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers. Acta Physiologiae Plantarum, 40(4), 70.CrossRefGoogle Scholar
  37. Thomson, M. J., de Ocampo, M., Egdane, J., Rahman, M. A., Sajise, A. G., Adorada, D. L., et al. (2010). Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 3(2–3), 148–160.CrossRefGoogle Scholar
  38. Visscher, P. M., Haley, C. S., & Thompson, R. (1996). Marker-assisted introgression in backcross breeding programs. Genetics, 144(4), 1923–1932.PubMedPubMedCentralGoogle Scholar
  39. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A. M., Zeng, L., et al. (2005). Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiology, 139(2), 822–835.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Walia, H., Wilson, C., Zeng, L., Ismail, A. M., Condamine, P., & Close, T. J. (2007). Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Molecular Biology, 63(5), 609–623.PubMedCrossRefGoogle Scholar
  41. Zang, J., Sun, Y., Wang, Y., Yang, J., Li, F., Zhou, Y., et al. (2008). Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Science in China, Series C: Life Sciences, 51(7), 583–591.Google Scholar
  42. Zeng, L., Kwon, T.-R., Liu, X., Wilson, C., Grieve, C. M., & Gregorio, G. B. (2004). Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptations to saline soils. Plant Science, 166(5), 1275–1285.CrossRefGoogle Scholar
  43. Zhou, P., Tan, Y., He, Y., Xu, C., & Zhang, Q. (2003). Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theoretical and Applied Genetics, 106(2), 326–331.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  1. 1.Department of Plant Biotechnology, Centre for Plant Molecular Biology and BiotechnologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations