The effect of drying methods on yield and chemical constituents of the essential oil in Lavandula angustifolia Mill. (Lamiaceae)

  • Mohammad Hossein Mirjalili
  • Peyman Salehi
  • Masoud Mohammadi Vala
  • Mansour GhorbanpourEmail author
Original Article


This study investigated the effect of drying methods on the essential oil content and composition of Lavandula angustifolia for identification suitable drying method for post harvest processing. The drying methods tested were sun-drying (SD, 72 h under sunlight), closed shade-drying (CSD, 72 h under shade condition in a closed place), oven-drying (OD, 48 h heated at 40 °C) and microwave-drying (MD, 5 min irradiated at 55% energy of 900 W). The essential oils from dried samples were isolated by hydrodistillation and analysed by gas chromatography–flame ionization detector and GC–mass spectrometry. The drying method had a significant effect on the essential oil content (w/w%) and was in the order of: CSD (3.4%) > OD (2.6%) > SD (1.6%) > MD (0.9%). In total, 35, 36, 34 and 38 constituents were identified and quantified in shade, sunlight, oven and microwave drying, representing 99.1%, 98.3%, 98.7% and 98.2% of the total oil, respectively. The main components were linalool, linalyl acetate, lavandulyl acetate, terpinen-4-ol and α-terpineol. However, the drying method had no effect on the proportion of the various components. UPGMA cluster and principal component analyses from essential oil constituents grouped the employed treatments into three main clusters.


Lavender Lamiaceae Drying method Essential oil Linalool 



We are grateful to Shahid Beheshti University Research Council for financial support of this work.


  1. Adams, R. P. (1995). Identification of essential oil components by gas chromatography/mass spectroscopy. Carol Stream, IL: Allured Publishing Corp.Google Scholar
  2. Akhondzadeh, S., Kashani, L., Fotouhi, A., Jarvandi, S., Mobaseri, M., Moin, M., et al. (2003). Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: A double-blind, randomized trial. Progress in Neuro-Psycopharmacology and Biological psychiatry, 27, 123–127.CrossRefGoogle Scholar
  3. An, M., Haig, T., & Hatfield, P. (2001). On-site field sampling and analysis of fragrance from living Lavender (Lavandula angustifolia L.) flowers by solid-phase microextraction coupled to gas chromatography and ion-trap mass spectrometry. Journal of Chromatography A, 917, 245–250.CrossRefGoogle Scholar
  4. Asekun, O. T., Grierson, D. S., & Afolayan, A. J. (2007). Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. capensis. Food Chemistry, 101, 995–998.CrossRefGoogle Scholar
  5. Azadbakht, M. (2000). Classification of medicinal plants. Tehran: Taymoorzadeh-tabib Publication.Google Scholar
  6. Baritaux, O., Richard, H., Touche, J., & Derbesy, M. (1992). Effects of drying and storage of herbs and spices on the essential oil. Part I. Basil, Ocimum basilicum L. Flavour and Fragrance Journal, 7, 267–271.CrossRefGoogle Scholar
  7. Bartley, J. P., & Jacobs, A. L. (2000). Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). Journal of Science and Food Agriculture, 80, 209–215.CrossRefGoogle Scholar
  8. Orphanides, A., Goulas, V., & Gekas, V. (2016). Drying technologies: Vehicle to high-quality herbs. Food Engineering Reviews, 8, 164–180.CrossRefGoogle Scholar
  9. Brithish Pharmacopeia. (1988). London: HMSO, A 138.Google Scholar
  10. Andrei, F., Ersilia, A., Tulcan, C., & Dragomirescu, A. (2018). Chemical composition and the potential of Lavandula angustifolia L. oil as a skin depigmentant. Records of Natural Products, 12, 340–349.CrossRefGoogle Scholar
  11. Buyukokuroglu, M. E., Gepdiremen, A., Hacimuftuoglu, A., & Oktay, M. (2003). The effects of aqueous extract of Lavandula angustifolia flowers in glutamate-induced neurotoxicity of cerebellar granular cell culture of rat pups. Journal of Ethnopharmacology, 84, 91–94.CrossRefGoogle Scholar
  12. Çalişkan, T., Maral, H., Prieto, L. M. V. G., Kafkas, E., & Kirici, S. (2017). The influence of different drying methods on essential oil content and composition of peppermint (Mentha piperita L.) in çukurova conditions. Indian Journal of Pharmaceutical Education and Research, 51, S518–S521.CrossRefGoogle Scholar
  13. Carrasco, A., Martinez-Gutierrez, R., Tomas, V., & Tudela, J. (2015). Lavandula angustifolia and Lavandula latifolia essential oils from Spain: Aromatic profile and bioactivities. Planta Medica, 82, 163–170.CrossRefGoogle Scholar
  14. Consueldo Diaz-Maroto, M., Soledad Perez-Coello, M., & Dolores Cabezudo, M. (2002). Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). Journal of Agriculture and Food Chemistry, 50, 4520–4524.CrossRefGoogle Scholar
  15. Dehghani Mashkani, M. R., Larijani, K., Mehrafarin, A., & Naghdi Badi, H. (2018). Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Industrial Crops and Products, 112, 389–395.CrossRefGoogle Scholar
  16. Diaz-Maroto, M. C., Pérez-Coello, M. S., Gonzalez Vinas, M. A., & Cabezudo, M. D. (2003). Influence of drying on the flavor quality of spearmint (Mentha spicata L.). Journal of Agriculture and Food Chemistry, 51, 1265–1269.CrossRefGoogle Scholar
  17. Ebadi, M. T., Azizi, M., Sefidkon, F., & Ahmadi, N. (2015). Influence of different drying methods on drying period, essential oil content and composition of Lippia citriodora Kunth. Journal of Applied Research on Medicinal and Aromatic Plants, 2, 182–187.CrossRefGoogle Scholar
  18. Erland, L. A. E., & Mahmoud, S. S. (2015). Lavender (Lavandula angustifolia Mill.) oils. In V. R. Preedy (Ed.), Essential oils in food preservation, flavor and safety (pp. 501–508). Amsterdam: Elsevier.Google Scholar
  19. Fakhari, A. R., Salehi, P., Heydari, R., Nejad Ebrahimi, S., & Haddad, P. R. (2005). Hydrodistillation-headspace solvent microextraction, a new method for analysis of the essential oil components of Lavandula angustifolia Mill. Journal of Chromatography A, 1098, 14–18.CrossRefGoogle Scholar
  20. Figiel, A., Szumny, A., Gutierrez-Ortiz, A., & Carbonell-Barrachina, A. (2010). Composition of oregano essential oil (Origanum vulgare) as affected by drying method. Journal of Food Engineering, 98, 240–247.CrossRefGoogle Scholar
  21. Guyot-Declerck, C., Renson, S., Bouseta, A., & Collin, S. (2002). Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia, and Lavandula angustifolia × latifolia honeys. Food Chemistry, 79, 453–459.CrossRefGoogle Scholar
  22. Hajhashemi, V., Ghannadi, A., & Sharif, B. (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of Ethnopharmacology, 89, 67–71.CrossRefGoogle Scholar
  23. Huopalahti, R., Kesalahti, R., & Linko, R. (1985). Effect of hot air and freeze-drying on the volatile compounds of dill (Anethum graveolens L.) herb. Journal of Agricultural Science of Finland, 57, 133–138.Google Scholar
  24. Kaminski, E., Wasowicz, E., Zamirska, R., & Wower, M. (1986). The effect of drying and storage of dried carrots on sensory characteristics and volatile constituents. Nahrung, 30, 819–828.Google Scholar
  25. Lesage-Meessen, L., Bou, M., Sigoillot, J.-C., Faulds, C. B., & Lomascolo, A. (2015). Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Applied Microbiology and Biotechnology, 99, 3375–3385.CrossRefGoogle Scholar
  26. Lewicki, P. P., & Pawlak, G. (2003). Effect of drying on microstructure of plant tissue. Drying Technology, 12(4), 657–683.CrossRefGoogle Scholar
  27. Lis-Balchin, M. (2002). Lavender: The genus Lavandula (medicinal and aromatic plants-industrial profiles). Abingdon: Taylor & Francis.Google Scholar
  28. Lis-Balchin, M., & Hart, S. (1999). Studies on the mode of action of the essential oil of lavender (Lavandula angustifolia P. Miller). Phytotherapy Research, 13, 540–542.CrossRefGoogle Scholar
  29. López, V., Nielsen, B., Solas, M., Ramírez, M. J., & Jäger, A. K. (2017). Exploring pharmacological mechanisms of lavender (Lavandula angustifolia) essential oil on central nervous system targets. Frontiers in Pharmacology, 8, 280.CrossRefGoogle Scholar
  30. Nykanen, L., & Nykanen, I. (1987). In flavour science and technology: The effect of drying on the composition of the essential oil of some Labiateae herbs cultivated in Finland. New York: Wiley.Google Scholar
  31. Omidbaigi, R., Sefidkon, F., & Kazemi, F. (2004). Influence of drying methods on the essential oil content and composition of Roman chamomile. Flavour and Fragrance Journal, 19, 196–198.CrossRefGoogle Scholar
  32. Ozdemir, N., Ozgen, Y., Kiralan, M., Bayrak, A., Arslan, N., & Ramadan, M. F. (2018). Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. Journal of Food Measurement and Characterization, 12, 820–825.CrossRefGoogle Scholar
  33. Pala-Paul, J., Brophy, J. J., Goldsack, R. J., & Fontaniella, B. (2004). Analysis of the volatile components of Lavandula canariensis (L.) Mill., a Canary Islands endemic species, growing in Australia. Biochemichal Systematic and Ecology, 32, 55–62.CrossRefGoogle Scholar
  34. Rahimmalek, M., & Goli, S. A. H. (2013). Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis Celak. leaves. Industrial Crops and Products, 42, 613–619.CrossRefGoogle Scholar
  35. Rao, L. J., Singh, M., Rahavan, B., & Abraham, K. O. (1998). Rosemary (Rosmarinus officinalis L.). Impact of drying on its flavor quality. Journal of Food Quality, 2, 107–115.CrossRefGoogle Scholar
  36. Rocha, R. P., Melo, E. C., & Radünz, L. L. (2011). Influence of drying process on the quality of medicinal plants: A review. Journal of Medicinal Plant Research, 5, 7076–7084.Google Scholar
  37. Sarosi, S. Z., Sipos, L., Kokai, Z., Pluhar, Z. S., Szilvassy, B., & Novak, I. (2013). Effect of different drying techniques on the aroma profile of Thymus vulgaris analyzed by GC–MS and sensory profile methods. Industrial Crops and Products, 46, 210–216.CrossRefGoogle Scholar
  38. Sefidkon, F., Abbasi, K., & Bakhshi Khaniki, G. (2006). Influence of drying and extraction method on yield and chemical composition of the essential oil of Satureja hortensis. Food Chemistry, 99, 19–23.CrossRefGoogle Scholar
  39. Shibamoto, T. (1987). In P. Sandra & C. Bicchi (Eds.), Capillary gas chromatography in essential oil analysis, retention indices in essential oil analysis. New York: Huethig.Google Scholar
  40. Singh, P., Andola, H., Rawat, M. S. M., Nee Pant, G. J., & Jangwan, J. S. (2015). GC–MS analysis of essential oil from Lavandula angustifolia cultivated in Garhwal Himalaya. Natural Products Journal, 5, 268–272.CrossRefGoogle Scholar
  41. Soares, R. D., Chaves, M. A., Da Silva, A. A. L., Da Silva, M. V., & Souza, B. S. (2007). Influence of drying temperature and air velocity related to essential oil and linalol contents of the basil (Ocimum basilicum L.). Cienca Agrotecnologia, 31, 1108–1113.CrossRefGoogle Scholar
  42. Tardugno, R., Serio, A., Pellati, F., D’Amato, S., Chaves López, C., Bellardi, M. G., et al. (2018). Lavandula x intermedia and Lavandula angustifolia essential oils: phytochemical composition and antimicrobial activity against foodborne pathogens. Natural Product Research, 21, 1–6. Scholar
  43. Trease, G. E., & Evans, W. C. (1996). Pharmacognosy. London: Saunders.Google Scholar
  44. Turek, C., & Stintzing, F. C. (2013). Stability of essential oils: A review. Comprehensive Reviews in Food Science and Food Safety, 12, 40–53.CrossRefGoogle Scholar
  45. Venskutonis, P. R. (1997). Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chemistry, 59, 219–227.CrossRefGoogle Scholar
  46. Verma, R. S., Rahman, L. U., Chanotiya, C. S., Verma, R. K., Chauhan, A., Yadav, A., et al. (2010). Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. Journal of Serbian Chemical Society, 75, 343–348.CrossRefGoogle Scholar
  47. Yousif, A. N., Scaman, C. H., Durance, T. D., & Girard, B. (1999). Flavor volatiles and physical properties of vacuum-microwave and air-dried sweet basil (Ocimum basilicum L.). Journal of Agriculture and Food Chemistry, 47, 4777–4781.CrossRefGoogle Scholar
  48. Yusefoglu, A., Celik, H., & Kirbaslar, F. G. (2004). Utilization of Lavandula angustifolia Miller extracts as natural repellents, pharmaceutical and industrial auxiliaries. Journal of Serbian Chemical Society, 69, 1–7.CrossRefGoogle Scholar
  49. Zhang, L.-L., Lv, S., Xu, J.-G., & Zhang, L.-F. (2018). Influence of drying methods on chemical compositions, antioxidant and antibacterial activity of essential oil from lemon peel. Natural Product Research, 32, 1184–1188.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  • Mohammad Hossein Mirjalili
    • 1
  • Peyman Salehi
    • 2
  • Masoud Mohammadi Vala
    • 2
  • Mansour Ghorbanpour
    • 3
    Email author
  1. 1.Department of Agriculture, Medicinal Plants and Drugs Research InstituteShahid Beheshti University, G. C.TehranIran
  2. 2.Department of Phytochemistry, Medicinal Plants and Drugs Research InstituteShahid Beheshti University, G. C.TehranIran
  3. 3.Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran

Personalised recommendations