Advertisement

Effect of differential concentration of micronutrient copper and zinc on in vitro morphogenesis of Foeniculum vulgare Mill.

  • Pratibha Dwivedi
  • Dhruti Amin
  • Abhishek SharmaEmail author
Short Communication
  • 14 Downloads

Abstract

The present study was carried out to investigate the morphogenic roles played by copper and zinc during micropropagation of Foeniculum vulgare Mill., an aromatic medicinal herb and the major spices of traditional food. When grown on MS medium the cotyledonary node gave the maximum multiple shoot proliferation over MS medium supplemented with 1.0 mg L−1 BAP concentration. Incorporation of 0 μM CuSO4 or 29.91 µM ZnSO4 to Murashige and Skoog (MS) medium with optimized concentration of BAP i.e. 1.0 mg L−1 induced a maximum number of shoot buds per nodal explant (4.3 ± 0.8 and 4.1 ± 1.1, respectively). However, higher concentration of both the micronutrients effectively affected the morphogenic potential of F. vulgare. The optimum concentrations of Cu and Zn in culture media are highly important for obtaining rapid and enhanced in vitro multiplication of F. vulgare.

Keywords

Foeniculum vulgare Mill. Micropropagation Micronutrients Copper Zinc 

Notes

Acknowledgements

Authors greatly acknowledge Director (CGBIBT-UTU), Research Promotion Scheme of Uka Tarsadia University (Grant Nos. UTU/RPS/1267/2018, UTU/RPS/1431-5/2019) and Director, Biyani Girls College for providing partial funding and necessary support to conduct this research.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

References

  1. Anzidei, M., Bennici, A., Schiff, S., Tani, C., & Mori, B. (2000). Organogenesis and somatic embryogenesis in Foeniculum vulgare: Histological observations of developing embryogenic callus. Plant Cell, Tissue and Organ Culture,61, 69–79.CrossRefGoogle Scholar
  2. Anzidei, M., Vivona, L., Schiff, S., & Bennici, A. (1996). In vitro culture of Foeniculum vulgare: Callus characteristics in relation to morphogenesis. Plant Cell, Tissue and Organ Culture,45, 263–268.CrossRefGoogle Scholar
  3. Arnon, D. I., & Stout, P. R. (1939). The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology,14, 371–375.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asami, T., Kuboto, M., & Orikasa, K. (1995). Distribution of different fraction of cadmium, zinc, leads, and copper in unpolluted and polluted soil. Water, Air, and Soil pollution,83, 187–194.CrossRefGoogle Scholar
  5. Badgujar, S. B., Patel, V. V., & Bandivdekar, A. H. (2014). Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Research International, 2014, 1–32.CrossRefGoogle Scholar
  6. Carman, J. G., Jefferson, N. E., & Campbell, W. F. (1987). Induction of embryogenic (Triticum aestivum L.) calli, I. quantification of cultivar and culture medium effects. Plant Cell, Tissue and Organ Culture,10, 101–113.CrossRefGoogle Scholar
  7. Dahleen, L. S. (1995). Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell, Tissue and Organ Culture,43, 267–269.Google Scholar
  8. Dahleen, L. S., & Bregitzer, P. (2002). An improved media system for high regeneration rates from barley immature embryo-derived callus cultures of commercial cultivars. Crop Science,42, 934–938.CrossRefGoogle Scholar
  9. Davies, K. L., Davies, M. S., & Francis, D. (1991). The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytologist,118, 565–570.CrossRefGoogle Scholar
  10. Delhaize, E., Loneragan, J. F., & Webb, J. (1985). Development of three copper metalloenzyme in clover leaves. Plant Physiology,78, 4–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Droppa, M., & Horvath, G. (1990). The role of copper in photosynthesis—Critical review. Plant Science,9, 111–123.Google Scholar
  12. Du Manoir, J., Desmarest, P., & Saussay, R. (1985). In vitro propagation of fennel (Foeniculum vulgare Miller). Scientia Horticulturae, 27(1–2), 15–19.CrossRefGoogle Scholar
  13. Dua, A., Garg, G., & Mahajan, R. (2013). Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare Miller). European Journal of Experimental Biology,3(4), 203–208.Google Scholar
  14. Dunn, G. M., Huth, J. R., & Lewty, M. J. (1997). Coating nursery containers with copper carbonate improves root morphology of five native Australian tree species used in agroforestry system. Agroforestry System,37, 143–155.CrossRefGoogle Scholar
  15. Garcia-Sago, B., Roig, L. A., & Moreno, V. (1991). Enhancement of morphogenetic response in cotyledon-derived explants of Cucumis melo induced by copper ions. Acta Horticultrae,289, 229–230.CrossRefGoogle Scholar
  16. Goldbold, D. L., Horst, W. J., Maschner, H., Collins, J. C., & Thurman, D. A. (1983). Root growth and Zn uptake by two ecotypes of Deschampsiacaespitosaas affected by high Zn concentrations. Zeitschrift für Pflanzenphysiologie,112, 315–324.CrossRefGoogle Scholar
  17. Gori, P., Schiff, S., Santandrea, G., & Bennici, A. (1998). Response of in vitro cultures of Nicotiana tobacuum L. to copper stress and selection of plants from Cu tolerant callus. Plant Cell, Tissue and Organ Culture,53, 161–169.CrossRefGoogle Scholar
  18. He, D. G., Yang, Y. M., & Scott, K. J. (1991). Zinc deficiency and the formation of white structures in immature embryo cultures of wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture,24, 9–12.CrossRefGoogle Scholar
  19. Hunault, G. (2003). In vitro culture of fennel tissues (Foeniculum vulgare Miller) from cell suspension to mature plant. Scientia Horticulturae,22, 55–65.CrossRefGoogle Scholar
  20. Hunault, G., & Desmaret, P. (1989). Field measurement of somaclonal variation during somatic embryogenesis in bitter fennel. Bulletin de la Societe Botanique de France Actualites Botaniques (France),137, 45–49.CrossRefGoogle Scholar
  21. Hunault, G., & Maatar, A. (1995). Enhancement of somatic embryogenesis frequency by gibberellic acid in fennel. Plant Cell, Tissue and Organ Culture,41, 171–176.CrossRefGoogle Scholar
  22. Khare, M. N., Tiwari, S. P., & Sharma, Y. K. (2014). Disease problems in fennel (Foeniculum vulgare Mill) and fenugreek (Trigonella foenum-graceum L.) cultivation and their management for production of quality pathogen free seeds. International Journal of Seed Spices,4, 11–17.Google Scholar
  23. Kothari, S. L., Agarwal, K., & Kumar, S. (2004). Inorganic nutrient manipulation for highly improved in vitro plant regeneration in finger miller—Eleusine coracana L. Gaerth In Vitro Cellular & Developmental Biology-Plant,40, 515–519.CrossRefGoogle Scholar
  24. Kumar, S., Narula, A., Sharma, M. P., & Srivastava, P. S. (2003). Effect of copper and zinc on growth, secondary metabolite content and micropropagation of Tinosporacordifolia: A medicinal plant. Phytomorphology,53, 79–91.Google Scholar
  25. Lipman, C. B., & Mackinney, G. (1931). Proof of the essential nature of copper for higher green plants. Plant Physiology,6, 593–599.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Loberant, B., & Altman, A. (2010). Micropropagation of plants. In M. C. Flickinger (Ed.), Encyclopedia of industrial biotechnology: Bioprocess, bioseparation, and cell technology (pp. 3499–3515). New York: Wiley.Google Scholar
  27. Macnair, M. R. (1993). The genetics of metal tolerance in vascular plants. New Phytologist,124(4), 541–559.CrossRefGoogle Scholar
  28. Marschner, H. (1986). Mineral nutrition in higher plants (pp. 477–542). London: Academic Press.Google Scholar
  29. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). San Diego: Academic Press.Google Scholar
  30. Matsubara, S., Dohya, N., & Murakami, K. (1994). Callus formation and regeneration of adventitious embryos from carrot, fennel and mitsuba microspores by anther and isolated microspore cultures. Genetic Improvement of Horticultural Crops by Biotechnology,392, 129–138.Google Scholar
  31. Morales, P., Carvalho, A. M., Sanchez-Mata, M. C., Amara, M. C., Molina, M., & Ferreira, I. C. F. R. (2012). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution,59(5), 851–863.CrossRefGoogle Scholar
  32. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum,15, 473–497.CrossRefGoogle Scholar
  33. Nirwan, R. S., & Kothari, S. L. (2003). High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. Vitro Cellular & Developmental Biology-Plant,2, 165–168.Google Scholar
  34. Orhan, I. E., Ozcelik, B., Kartal, M., & Kan, Y. (2012). Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turkish Journal of Biology,36(3), 239–246.Google Scholar
  35. Popelka, J. E., & Altpeter, F. (2001). Interactions between genotypes and culture media components for improved in vitro response of rye (Secale cereal L.) inbred lines. Plant Cell Reproduction,20, 575–582.CrossRefGoogle Scholar
  36. Pradhan, M., Sribhuwaneswari, S., Karthikeyan, D., Minz, S., Sure, P., Chandu, A. N., et al. (2008). In-vitrocytoprotection activity of Foeniculum vulgare and Helicteresisora in cultured human blood lymphocytes and antitumour activity against B16F10 melanoma cell line. Research Journal of Pharmacy and Technology,1(4), 450–452.Google Scholar
  37. Preece, J. E. (1995). Can nutrient salts partially substitute for plant growth regulators? Plant Tissue Culture Biotechnology,1, 26–37.Google Scholar
  38. Purnhauser, L., & Gyulai, G. (1993). Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. Plant Cell, Tissue and Organ Culture,35, 131–139.CrossRefGoogle Scholar
  39. Ramage, C. M., & Williams, R. R. (2002). Mineral nutrition and plant morphogenesis. Vitro Cell Development and Biology of Plant,38, 116–124.CrossRefGoogle Scholar
  40. Reed, B. M., Wada, S., DeNoma, J., & Niedz, R. P. (2013). Improving in vitro mineral nutrition for diverse pear germplasm. Vitro Cellular & Developmental Biology-Plant,49, 343–355.CrossRefGoogle Scholar
  41. Saba, P. D., Iqbal, M., & Srivastava, P. S. (1999). Effect of zinc sulphate and copper sulphate on regeneration and lepidine content in Lepidium sativum L. Biologia Plantarum,43, 1–4.Google Scholar
  42. Samad, A., Zaim, M., Ajayakumar, P. V., Khaliq, A., & Alam, M. (2002). Little Leaf a New Disease of Fennel (Foeniculum vulgare Mill.) caused by Phytoplasma in India. Journal of Plant Diseases and Protection,109, 506–511.Google Scholar
  43. Sarasan, V., Cripps, R., Ramsay, M. M., Atherton, C., McMichen, M., Prendergast, G., et al. (2006). Conservation in vitro of threatened plants-progress in the past decade. Vitro Cellular & Developmental Biology-Plant,42, 206–214.CrossRefGoogle Scholar
  44. Schwambach, J., Fadanelli, C., & Fett-Neto, A. G. (2005). Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globules. Journal of Tree Physiology,25, 487–494.PubMedCrossRefGoogle Scholar
  45. Sharma, A., Verma, P., Mathur, A., & Mathur, A. K. (2018). Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloids pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma,255, 1281–1294.PubMedCrossRefGoogle Scholar
  46. Sharma, A., Verma, N., Verma, P., Verma, R. K., Mathur, A., & Mathur, A. K. (2017). Optimization of a Bacopa monnieri based genetic transformation model for testing the expression efficiency of pathway gene constructs of medicinal cropsz,53, 22–32.Google Scholar
  47. Shukla, S., & Sharma, A. (2017). In vitro seed germination, proliferation, and ISSR marker-based clonal fidelity analysis of Shorea tumbuggaia Roxb.: An endangered and high trade medicinal tree of Eastern Ghats. Vitro Cellular & Developmental Biology-Plant,53(3), 200–208.CrossRefGoogle Scholar
  48. Tahiliani, S., & Kothari, S. L. (2004). Increased copper content of the medium improves plant regeneration from immature embryo derived callus of wheat (Triticum aestivum). Journal of Plant Biochemistry and Biotechnology,13, 85–88.CrossRefGoogle Scholar
  49. Theiler-Hedtrich, R., & Kägi, A. C. (1990). Cloning in vitro and somatic embryogenesis in Foeniculum vulgare MILL. (Fennel) of ‘Zefafino’ and ‘Zefatardo’. Vitro Culture, XXIII IHC,300, 287–292.Google Scholar
  50. Verma, P., & Mathur, A. K. (2011). Direct shoot bud organogenesis and plant regeneration from leaf explants in Catharanthus roseus. Plant Cell, Tissue and Organ Culture,106, 401–408.CrossRefGoogle Scholar
  51. Welch, R. M., & Shuman, L. (1995). Micronutrient nutrition of plants. Critical Review of Plant Science,14(1), 49–82.CrossRefGoogle Scholar
  52. Zenk, M. H. (1996). Heavy metal detoxification in higher plants—A review. Gene,179, 21–30.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  1. 1.Department of ScienceBiyani Girls CollegeJaipurIndia
  2. 2.C. G. Bhakta Institute of BiotechnologyUka Tarsadia UniversitySuratIndia

Personalised recommendations