Advertisement

Cadmium accumulation and alkaloid production of Narcissus tazetta plants grown under in vitro condition with cadmium stress

  • Seyedeh Homeira SoleimaniEmail author
  • Francoise Bernard
  • Mohsen Amini
  • Ramezan-Ali Khavari- nezhad
Original Article
  • 9 Downloads

Abstract

The capacity to accumulate cadmium (Cd) in Narcissus tazetta was investigated. Narcissus, an ornamental and medicinal plant can be used for the production of highly valuable alkaloids with anti-tumor, anti-viral and anti-cholinergic activities. For rapid propagation, in vitro micropropagation of this plant was done by three procedures: induction, proliferation and bulb production from twin scales as explants. After 4 months, micropropagated plants were treated by two concentrations of cadmium chloride (0.5, 1.0 mM) in the MS + 9% sucrose solidified media. After 3 weeks, growth, total proteins, peroxidase activity, Cd accumulation, quality and quantity of alkaloids were studied. Results showed that this plant accumulated 2778.13 μg g−1 DW, 801.87 μg g−1 DW and 162.8313 μg g−1 DW Cd in roots, bulbs and leaves respectively without any impact on growth. In order to study the ability of this plant in phytoremediation, tolerance index (TI), bioconcentration factors (BCF) and translocation factor (TF) were measured. Due to the TI > 0.6, BCF > 1 and TF < 1 concluded that Narcissus is suitable as phytostabilizer for remediation of Cd from contaminated media. Peroxidase activity increased under Cd stress. Also, isozyme pattern of peroxidase was changed and new anionic isoenzyme was appeared. Cd enhanced alkaloid content and altered its constituents as homolycorine was found instead of 9-O-demethylhomolycorine under Cd stress. This results presented in this study include the first report on the status of Narcissus alkaloids under Cd treatment.

Keywords

Cd Phytoremediation Narcissus tazetta Alkaloid Peroxidase 

Notes

Acknowledgements

Authors are thankful to Department of Biology of Shahid Beheshti University, Science and Research Branch of Islamic Azad University and Department of Pharmacy of Tehran University for the facilities and support provided in the institutes.

References

  1. AOAC Official Methods of Analysis, 2000. Horwitz, W. (Ed.), 17th ed., Section 999.11.Google Scholar
  2. Arduini, I., Godbold, D. L., & Onnis, A. (1996). Cadmium and copper uptake and distribution in mediterranean tree seedlings. Physiologia Plantarum,97, 111–117.CrossRefGoogle Scholar
  3. Ayangbenro, A. S., & Babalola, O. O. (2017). New strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health,14, 94A.CrossRefGoogle Scholar
  4. Bastida, J., Viladomat, F., & Codina, C. (1998). Narcissus alkaloids. In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (Vol. 20, pp. 323–401). Amsterdam: Elsevier.Google Scholar
  5. Bradford, M. M. (1976). A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72, 248–254.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cao, X., Ma, L. Q., & Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution,128, 317–325.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cetin, E. S., Babalik, Z., Hallac-Turk, F., & Gokturk-Baydar, N. (2014). The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. Cell suspension cultures. Biological Research,47(1), 47.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chaney, R. L., Mlik, M., & Li, Y. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology,8, 279–284.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chang-Kee, J., Gonzales, M. J., Ponce, O., Ramírez, L., León, V., Torres, A., et al. (2018). Accumulation of heavy metals in native Andean plants: Potential tools for soil phytoremediation in Ancash (Peru). Environmental Science and Pollution Research,25(34), 33957–33966.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cobbett, C. S. (2000). Phytochelatin biosynthesis and function in heavy metal detoxification. Current Opinion in Plant Biology,3, 211–216.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Evans, W. C., & Trease, G. E. (1996). Pharmacognosy (14th ed., Vol. 39, pp. 340–345). Oxford: Alden Press.Google Scholar
  12. Fang, Zh, Lou, L., Tai, Zh, Wang, Y., Yang, L., Hu, Zh, et al. (2017). Comparative study of Cd uptake and tolerance of two Italian ryegrass (Lolium multiflorum) cultivars. PeerJ,2(5), e3621.CrossRefGoogle Scholar
  13. Florijin, P. J., & Van Beusichem, M. L. (1993). Cadmium distribution in maize inbred lines: Effects of pH and level of Cd supply. Plant and Soil,153, 79–84.CrossRefGoogle Scholar
  14. Gerrits, M., & De Klerk, G. (1994). Progress in micropropagation of bulbous crops. Biotechnology and Biotechnological Equipment,1, 13–23.CrossRefGoogle Scholar
  15. Greger, M. (1999). Metal availability and bioconcentration in plants. In M. N. V. Prasad, et al. (Eds.), Heavy metal stress in plants (pp. 1–28). Berlin: Springer-Verlag.Google Scholar
  16. Hakmaoui, A., Ater, M., Boka, K., Baron, M., & Naturforsch, Z. (2007). Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on Salix purpurea and Phragmites australis. Zeitschrift für Naturforschung C,62, 417–426.CrossRefGoogle Scholar
  17. Harmens, H., Gusmao, N. G. C. P. B., Den Hartog, P. R., Verkleij, J. A. C., & Ernst, W. H. O. (1993). Uptake and transport of Zn in Zn-sensitive and Zn-tolerant Silene vulgaris. Journal of Plant Physiology,141, 309–315.CrossRefGoogle Scholar
  18. Huttova, J., Mistrík, I., Ollé-Šimonovičová, M., & Tamás, L. (2006). Cadmium induced changes in cell wall peroxidase isozyme pattern in barley root tips. Plant, Soil and Environment,52(6), 250–253.CrossRefGoogle Scholar
  19. Irfan, M., Ahmad, A., & Hayat, Sh. (2014). Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences,21, 125–131.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jiang, W., Liu, D., & Hou, W. (2001). Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresource Technology,76, 9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Korori, S. A. A. (1989). Gel elektrophoretische and Spektralphotomet rish unterruktur and zum ein slussder temperature ivs struktur and okapivitat der amylase und peroxidase isoenzyme Verschicdener bsvmarten. Ph.D. Thesis, University Sur Boden Kultur Win.Google Scholar
  22. Lagrimini, L. M., Gingas, V., Finger, F., & Rothstein, S. (1997). Characterization of antisense transformed plant deficient in the tobacco anionic peroxidase. Plant Physiology,114, 1187–1196.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Llabres, J. M., Viladomat, F., & Bastida, J. (1986). Two alkaloids from Narcissus requienii. Phytochemistry,25, 1453–1459.CrossRefGoogle Scholar
  24. Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2000). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist,145, 11–20.CrossRefGoogle Scholar
  25. Metwally, E. I., El-Denary, M. E., Omar, A. M. K., Naidoo, Y., & Dewir, Y. H. (2012). Bulb and vegetative characteristics of garlic (Allium sativum L.) from in vitro culture through acclimatization and field production. African Journal of Agricultural Research,7(43), 5792–5795.CrossRefGoogle Scholar
  26. Mishra, S., Mishra, A., & Kupper, H. (2017). Protein biochemistry and expressionn regulation of cadmium/zinc pumping Atpases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Frontiers in Plant Science,8, 1–13.PubMedPubMedCentralGoogle Scholar
  27. Mithofer, A., Schulze, B., & Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Letters,566, 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Mrudula, V., Vijaya, T., Chandra Mouli, K., Naga Jyothi, U., Aishwarya, S., & Deva Reddy, V. (2016). Novel method for removal of heavy metals by using low cost absorbents. Indo American Journal of Pharmaceutical Research,6(5), 5472–5480.Google Scholar
  29. Murashig, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum,15(3), 473–497.CrossRefGoogle Scholar
  30. Padmaja, K., Prasad, D. K., & Prasad, A. R. K. (1990). Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica,24, 399–405.Google Scholar
  31. Piršelová, E., Kuna, R., Lukáč, P., & Havrlentová, M. (2016). Effect of cadmium on growth, photosynthetic pigments, iron and cadmium accumulation of faba bean (Vicia faba cv. Aštar). Agriculture (Poľnohospodárstvo),62(2), 72–79.Google Scholar
  32. Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology,26, 252–258.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Rai, V., Khatoon, S., Bisht, S. S., & Mehrotra, S. (2005). Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere,61, 1644–1650.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Retamal-Salgado, J., Hirzel, J., Walter, I., & Matus, I. (2017). Bioabsorption and bioaccumulation of cadmium in the straw and grain of maize (Zea mays L.) in growing soils contaminated with cadmium in different environment. International Journal of Environmental Research and Public Health,14(11), 1399.PubMedCentralCrossRefGoogle Scholar
  35. Roy, S. K., Cho, S. W., Kwon, S. J., Mostafa Kamal, A. H., Kim, S. W., Oh, M. W., et al. (2016). Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS ONE,26, 1–27.Google Scholar
  36. Salt, D. E., Blaylock, M., & Kumar, N. P. B. A. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology,13, 468–474.PubMedPubMedCentralGoogle Scholar
  37. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning (pp. 18.47–18.54). New York: Cold Spring Harbor.Google Scholar
  38. Santos, J., Santos, I., & Salema, R. (1998). In vitro production of bulbs of Narcissus bubocodium flowering in the first season of growth. Scientia Horticulturae,76, 205–217.CrossRefGoogle Scholar
  39. Sharma, A., Sainger, M., Dwivedi, S., Srivastava, S., Tripathi, R. D., & Singh, R. P. (2010). Genotypic variation in Brassica juncea (L.) Czern cultivars in growth, nitrate assimilation, antioxidant responses and phytoremediation potential during cadmium stress. Journal of Environmental Biology,31(5), 773–780.Google Scholar
  40. Sobkowiak, R., Rymer, K., Rucińska, R., & Deckert, J. (2004). Cadmium-induced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Biochimica Polonica,51, 219–222.PubMedPubMedCentralGoogle Scholar
  41. Soleimani, S. H., Bernard, F., Amini, M., & Khavari-nezhad, R. A. (2007). Alkaloids from Narcissus tazetta L. Journal of Medicinal Plants,4(24), 58–63.Google Scholar
  42. Squires, W. M., Langton, F. A., & Fenlon, J. S. (1991). Factors influencing the transplantation success of micropropagated narcissus bulbils. Journal of Horticultural Science,6, 661–671.CrossRefGoogle Scholar
  43. Srivastava, N. K., & Srivastava, A. K. (2010). Influence of some heavy metals on growth, alkaloid content and composition in Catharanthus roseus L. Indian Journal of Pharmaceutical Sciences.,72(6), 775–778.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Tanee, T., Sudmoon, R., Thamsenanupap, P., & Arunrat Chaveerach, A. (2016). Effect of cadmium on DNA changes in Ipomoea aquatica Forssk. Polish Journal of Environmental Studies,25(1), 311–315.CrossRefGoogle Scholar
  45. Tiong, S. H., Looi, Ch Y, Hazni, H., Arya, A., Paydar, M., Wong, W. F., et al. (2013). Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules,18, 9770–9784.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Wojcik, M., Vangronsveld, J., & Tukiendorf, A. (2005). Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environmental and Experimental Botany,53, 151–161.Google Scholar
  47. Wu, F., Zhang, G., & Dominy, P. (2003). Four barley genotypes respond differently to cadmium: Lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany,50, 67–78.CrossRefGoogle Scholar
  48. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remedi. ISRN Ecology,2011, 1–20.CrossRefGoogle Scholar
  49. Zheljazkov, V. D., Craker, L. E., & Xing, B. (2006). Effects of Cd, Pb and Cu on growth and essential oil contents in dill, peppermint and basil. Environmental and Experimental Botany,58, 9–16.CrossRefGoogle Scholar
  50. Zheljazkov, V. D., & Nielsen, N. E. (1996). Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill) production. Journal of Essential Oil Research,8, 259–274.CrossRefGoogle Scholar
  51. Zheljazkov, V. D., & Warman, P. R. (2003). Application of high Cu compost to Swiss Chard and Basil. Science of the Total Environment,302, 13–26.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Zheng, G., Lv, H. P., Gao, S., & Wang, S. R. (2010). Effects of cadmium on growth and antioxidant responses in Glycyrrhiza uralensis seedlings. Plant, Soil and Environment,56(11), 508–515.CrossRefGoogle Scholar
  53. Zhou, W., & Qiu, B. (2005). Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science,169, 73.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceShahr-e-Qods Branch of Islamic Azad UniversityTehranIran
  2. 2.Department of Biology, Faculty of ScienceShahid Beheshti UniversityTehranIran
  3. 3.Department of Medicinal Chemistry, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  4. 4.Department of Plant Biology, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations