Advertisement

Plant Physiology Reports

, Volume 24, Issue 3, pp 446–459 | Cite as

Morphometric analysis and characterization of the nutritional quality in African yam bean accessions

  • Charity O. Aremu
  • Omena B. Ojuederie
  • Folake Ayo-Vaughan
  • Olatunde Dahunsi
  • Aruna Olasekan Adekiya
  • Adeniyi Olayanju
  • Ojo T. Adebiyi
  • Ige Sunday
  • Henry InegbedionEmail author
  • Abiola John Asaleye
  • Stephen Abolusoro
  • Christopher M. Aboyeji
  • Babatunde O. Ajiboye
  • Samuel Obaniyi
Original Article
  • 39 Downloads

Abstract

Underutilized crops with rich nutritional base in addition to high seed yield are currently promoted in reducing hunger and malnutrition ravaging Africans. Identifying specific accessions with rich genetic bases provide information for developing biofortified legumes. Fourteen morphological and two nutritional traits of 23 African yam bean accessions were assessed under a replicated field trial in one location over 4 years. Analysis of variance revealed significant variations for most traits with high genotypic correlation coefficients. Genotypic coefficient of variation was high for maturity date (59.95%), protein content (60.78%), tuber yield per plant (67.33%) and number of seeds per pod (77.22%). Seed yield did not correlate with protein and oil content, indicating that nutritional traits were independent of seed yield traits. Heritability was high for most traits but moderate for protein and oil content. First order predictor variables, identified number of seeds per pod, and pod traits to directly affect seed and tuber yield. First seven principal components axes explained 67% of total variation including nutritional traits. Four distinct accession clusters at the R-squared distance of 0.45 similarity index were identified. Simultaneous improvement in earliness, yield, protein and oil contents are achievable by selecting parents from clusters I and II. The only accession in cluster III (TSs12) produced nodules in addition to average seed yield, protein and oil content, and could be selected for cultivation in nitrogen deficient soils. Wide diversity in these accessions can be maximized for developing acceptable African yam bean varieties with enhanced yield and nutritional value.

Keywords

Accession Selection African yam bean Biofortification Morphology Nutritional traits 

Notes

Acknowledgements

The authors acknowledge Genetic Resources Center of the International Institute of Tropical Agriculture, Ibadan Nigeria for providing the AYB accessions used in this research

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40502_2019_472_MOESM1_ESM.doc (150 kb)
Supplementary material 1 (DOC 150 kb)

References

  1. Abbas, H. G., Mahmood, A., & Ali, Q. (2013). Genetic variability, heritability, genetic advance and correlation studies in cotton (Gossypium hirsutum L.). International Research Journal of Microbiology,4(6), 156–161.Google Scholar
  2. Adama, I. J., Asaleye, A. J., Oye, A. J., & Ogunjobi, O. J. (2018). Agricultural production in rural communities: Evidence from Nigeria. Journal of Environmental Management and Tourism (Volume IX, Summer),3(27), 428–438.  https://doi.org/10.14505/jemt.v9.3(27).04.CrossRefGoogle Scholar
  3. Adewale, B. D., Aremu, C. O., & Amazue, U. E. (2010). Intra-specific variability and diversity analysis of African yam bean by seed size parameters. ARPN Journal of Agricultural and Biological Science,7(6), 454–461.Google Scholar
  4. Adewale, B. D., Dumet, D. J., Vroh-Bi, I., Kehinde, O. B., Ojo, D. K., Adegbite, A. E., et al. (2012). Morphological diversity analysis of African yam bean and prospects for utilization in germplasm conservation and breeding. Genet Resources Crop Evolution,59, 927–936.CrossRefGoogle Scholar
  5. Adewale, B. D., & Odoh, N. C. (2013). A review on genetic resources, diversity and agronomy of African yam bean (Sphenostylis stenocarpa (Hochst Ex A. Rich.) Harms): A potential future food crop. Sustainable Agriculture Research,2(1), 32–43.Google Scholar
  6. Ahsan, M. Z., Muhammad, S. M., Hidayatullah, B., Abdul, W. S., Faiz, H. P., Abdul, R. C., et al. (2015). Genetic variability, coefficient of variance, heritability and genetic advance of some Gossypium hirsutum L. Accessions. Journal of Agricultural Science,7(2), 147–151.CrossRefGoogle Scholar
  7. Alake, C. O., & Alake, O. O. (2016). Genetic diversity for agro-nutritional traits in African landraces of Vina Subterranean germplasm. Journal of Crop Improvement,30(4), 378–398.CrossRefGoogle Scholar
  8. Amir, S., Farooq, J., Bibi, A., Khan, S. H., & Saleem, M. F. (2012). Genetic studies of earliness in Gossypium hirsutum L. International Journal for Agro Veterinary and Medical Sciences,6(3), 189–207.CrossRefGoogle Scholar
  9. AOAC. (1990). Official methods of analysis of the AOAC, 15th ed. Methods 932.06, 925.09, 985.29, 923.03. Association of official analytical chemists. Arlington, VA, USA.Google Scholar
  10. Aremu, C., Abberton, M., Adebiyi, T., Asaleye, A. J., Inegbedion, H., Abolusoro, S., et al. (2019). Selecting yield and nutritional traits in Sphenostylis stenocarpa landraces for food improvement. Recent Patents on Food, Nutrition & Agriculture.  https://doi.org/10.2174/2212798410666190307131047.CrossRefGoogle Scholar
  11. Aremu, C.O. (2012). Exploring statistical tools in measuring genetic diversity for crop improvement. In M. Caliskan (Ed.) Genetic diversity in plants. InTech. ISBN: 978-953-51 0185-7Google Scholar
  12. Aremu, C. O., Adebayo, M. A., Ariyo, O. J., & Adewale, B. D. (2007). Classification of genetic diversity and choice of parents for hybridization in cowpea Vigna unguiculata (L.) Walp for humid savannah ecology. African Journal of Biotechnology,6(20), 2333–2339.CrossRefGoogle Scholar
  13. Aremu, C. O., Alhassan, E. A., Asaleye, A. J., Alori, E., Ige, S., & Nayan, G. (2018). Effect of varietal and tillage methods on agronomic and yield characters of rice (Oryza Sativa L.). International Journal of Civil Engineering and Technology (IJCIET),9(13), 590–600.Google Scholar
  14. Aremu, C. O., & Ibirinde, D. (2012). Bio-diversity studies on accessions of African yam bean (Sphenostylis stenocarpa). International Journal of Agricultural Research,7(2), 78–85.  https://doi.org/10.3923/ijar.2012.CrossRefGoogle Scholar
  15. Asaleye, A. J., Lawal, A. I., Popoola, O., Alege, P. O., & Oyetade, O. O. (2019). Financial integration, employment and wages nexus: Evidence from Nigeria. Montenegrin Journal of Economics,15(1), 141–154.  https://doi.org/10.14254/1800-5845/2019.15-1.11.CrossRefGoogle Scholar
  16. Broadley, M., Alcock, R. J., Alford, J., Cartwright, P., Fairweather-Tait, S. J., Foot, I., et al. (2010). Selenium bio fortification of high yielding winter wheat (Triticum Aestivum L.) by liquid or granular se fertilisation. Plant and Soil,332, 5–18.  https://doi.org/10.10007/s1104-009-0234-4.CrossRefGoogle Scholar
  17. Derera, J., Tongoona, P., Pixley, K. V., Vivek, B., Laing, M. D., & Rij, N. C. (2008). Gene action controlling grey leaf spot resistance in Southern African maize germplasm. Crop Science,48, 93–98.CrossRefGoogle Scholar
  18. Gomez- Becerra, H. F., Erdem, H., Yaziek, A., Tutus, Y., Toron, B., Ozturk, L., et al. (2010). Grain concennation of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. Journal of Cereal Research,52, 342–349.  https://doi.org/10.1016/j.jesi2010-05-003.CrossRefGoogle Scholar
  19. Hanjagi, P. S., & Singh, B. (2017). Interactive regulation of iron and zinc nutrition in wheat (Triticum aestivum L.). Indian Journal Plant Physiology,22(1), 70–78.  https://doi.org/10.1007/s40502-016-0272-x.CrossRefGoogle Scholar
  20. Hashemi, A., & Shahani, A. (2019). Effects of salt stress on the morphological characteristics, total phenol and total anthocyanin contents of Roselle (Hibiscus sabdariffa). Plant Physiology Reports.  https://doi.org/10.1007/s40502-019-00446-y.CrossRefGoogle Scholar
  21. Hillocks, I., Bennet, C., & Mponda, O. M. (2012). Bambaranut: A review of utilization, market potential and crop improvement. African Crop Science Journal,20(1), 1–16.Google Scholar
  22. Ikhajiagbe, B., & Kwesi, M. J. (2012). Genetic assessment of three colour variants of African Yam Bean [Sphenostylis Stenocarpa] commonly grown in the Midwestern Region of Nigeria. International Journal of Modern Botany,2(2), 13–18.  https://doi.org/10.5923/j.ijmb.20120202.01.CrossRefGoogle Scholar
  23. Kant, K., Arora, A., & Singh, V. P. (2016). Salicylic acid influences biochemical characteristics of harvested tomato (Solanum lycopersicon L.) during ripening. Indian Journal Plant Physiology,21(1), 50–53.  https://doi.org/10.1007/s40502-015-0201-4.CrossRefGoogle Scholar
  24. Kingsolver, J. G., & Schemske, D. W. (1991). Path analysis of selection. TREE,6(9), 276–280.PubMedGoogle Scholar
  25. Klu, G. Y. P., Amoaley, H. M., Bansa, D., & Kumanya, E. K. (2000). Cultivation and use of African Yam Bean Sphenostylis stenocarpa in the Volta Region of Ghana. Plant Genetic Resources Newsletter,124, 13–16.Google Scholar
  26. Kumari, S., Krishnan, V., Jolly, M., & Sachdev, A. (2015). Reduction in phytate levels and HCl-extractability of divalent cations in soybean (Glycine max L.) during soaking and germination. Indian Journal Plant Physiology,20(1), 44–49.  https://doi.org/10.1007/s40502-014-0132-5.CrossRefGoogle Scholar
  27. Miller, D. D., & Welch, R. M. (2013). Food system strategies for preventing micronutrient malnutrition. Food Policy,12, 115–128.  https://doi.org/10.1016/j.foodpol.2013.06.008.CrossRefGoogle Scholar
  28. Mitchell, R. J. (1993). Path analysis: Pollination. In S. M. Scheiner & J. Gurevitch (Eds.), Design and analysis of ecological experiments (pp. 211–231). New York: Chapman and Hall.Google Scholar
  29. Nwofia, G. E., Kelechukwu, C., & Nwofia, B. (2013). Nutritional composition of some Piper nigrum (L.) accessions from Nigeria. International Journal of Medical Aromatic Plants,3(2), 245–254.Google Scholar
  30. Ofori, K., Kumaga, F., & Tonyigah, A. (2002). Morphological characterization and agronomic evaluation of Bambara groundnut (Vigna subterranean (L.) Verdc.) germplasm in Ghana. FAO Biodiversity,145, 23–28.Google Scholar
  31. Ojuederie, O. B., Balogun, M. O., Akande, S. R., Korie, S., & Omodele, T. (2015). Intraspecific variability in agro-morphological traits of African yam bean (Sphenostylis stenocarpa (Hochst ex. A. Rich) Harms. Journal of Crop Science and Biotechnology,18(2), 53–62.CrossRefGoogle Scholar
  32. Popoola, O., Asaleye, A. J., & Eluyela, D. F. (2018). Domestic revenue mobilization and agricultural productivity: evidence from Nigeria. Journal of Advanced Research in Law and Economics Volume IX, Summer, 4(34), 1439–1450.  https://doi.org/10.14505/jarle.v9.4(34).31.
  33. Potter, D. (1992). Economic botany of Sphenostylis (Leguminosae). Economic Botany,46, 262–275.  https://doi.org/10.1007/BF02866626.CrossRefGoogle Scholar
  34. Preetha, S., & Raveendran, T. S. (2007). Genetic variability and association studies in three different morphological groups of cotton (Gossypium hirsutum L.). Asian Journal of Plant Sciences,6(1), 122–128.CrossRefGoogle Scholar
  35. Rayman, M. P. (2008). Food chain selenium and human health: Emphasis on intake. The British Journal of Nutrition,100, 254–268.CrossRefGoogle Scholar
  36. Salaria, N., Kukreja, S., Kaur, S., & Goutam, U. (2018). Variable polyphenol oxidase (PPO) activity indicates grain quality in bread wheat (Triticum aestivum L.). Indian Journal Plant Physiology,23(3), 516–520.  https://doi.org/10.1007/s40502-018-0379-3.CrossRefGoogle Scholar
  37. SAS. (2011). Base SAS 9.3 Procedures Guide Statistical Procedures, SAS Institute Inc., Cary NU, USA.Google Scholar
  38. Sawkins, M. C., DeMeyer, J., & Ribaut, J. M. (2006). Chapter 8: Drought adaptation in maize. In J. M. Ribaut (Ed.), Drought adaptation in cereals (pp. 259–299). Philadelphia: Haworth press Inc.Google Scholar
  39. Swaminathan, M. S. (2012). Combating hunger. Science,338, 1009.  https://doi.org/10.1126/science123105.CrossRefPubMedGoogle Scholar
  40. Touré, Y., Koné, M., Kouakou, T. H., & Kone, D. (2012). Agromorphological and phenological variability of 10 bambara groundnut [Vigna subterranea (L.) Verdc. (Fabaceae)] Landraces cultivated in the Ivory Coast. Tropicultura,30, 216–221.Google Scholar
  41. Tyagi, R., Sharma, A., Srivastava, P. C., Shankhdhar, D., & Shankhdhar, S. C. (2018). Modulation of phytic acid and phytic acid-zinc molar ratio by different modes of zinc application in rice. Indian Journal Plant Physiology,23(3), 529–535.  https://doi.org/10.1007/s40502-018-0399.CrossRefGoogle Scholar
  42. Upadhyay, P., Singh, V. K., & Neeraja, C. N. (2011). Identification of genotype specific alleles and molecular diversity assessment of popular rice (Oriza sativa L) varieties of India. International Journal of Plant Breeding and Genetics,5, 130–140.CrossRefGoogle Scholar
  43. Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association,58, 236–244.  https://doi.org/10.1080/01621459.1963.10500845.CrossRefGoogle Scholar
  44. Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists and Agronomists (p. 271). Florida: CRC Press.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  • Charity O. Aremu
    • 1
  • Omena B. Ojuederie
    • 2
  • Folake Ayo-Vaughan
    • 3
  • Olatunde Dahunsi
    • 4
  • Aruna Olasekan Adekiya
    • 1
  • Adeniyi Olayanju
    • 5
  • Ojo T. Adebiyi
    • 1
  • Ige Sunday
    • 1
  • Henry Inegbedion
    • 6
    Email author
  • Abiola John Asaleye
    • 6
  • Stephen Abolusoro
    • 1
  • Christopher M. Aboyeji
    • 1
  • Babatunde O. Ajiboye
    • 1
  • Samuel Obaniyi
    • 1
  1. 1.College of Agricultural SciencesLandmark UniversityOmu-AranNigeria
  2. 2.Food Security and Safety Niche, Microbial Biotechnology Research Laboratory, Faculty of Natural and Agricultural SciencesNorth-West UniversityMmabathoSouth Africa
  3. 3.Department of Plant Breeding and Seed TechnologyFUNAABAbeokutaNigeria
  4. 4.Department of Micro-BiologyLandmark UniversityOmu-AranNigeria
  5. 5.Department of Agricultural and Biosystem EngineeringLandmark UniversityOmu-AranNigeria
  6. 6.College of Business and Social SciencesLandmark UniversityOmu-AranNigeria

Personalised recommendations