Genome-wide identification and expression profiling of genes encoding universal stress proteins (USP) identify multi-stress responsive USP genes in Arabidopsis thaliana

  • Monika Bhuria
  • Parul Goel
  • Sanjay Kumar
  • Anil Kumar SinghEmail author
Original Article


Universal stress proteins (USPs) are stress-responsive proteins conserved among various organisms, including bacteria, plants and metazoans. However, in plants, the function of most of the USPs remains largely unknown. In the present study, we have identified 53 USP domain-containing proteins encoded by 41 genes in the Arabidopsis genome. Based on the presence of additional protein kinase or tyrosine kinase domain, the nomenclature has been provided to these proteins. Comprehensive in silico expression profiling of AtUSPs under various developmental stages revealed that most of the genes are expressed in a tissue-specific manner. Under abiotic stresses, AtUSP9 and AtUSP12 were identified as multi-stress responsive in both shoot and root tissues. Interestingly, AtUSP9 was also induced under various pathogens and elicitor treatments. The expression analysis of USP genes under abiotic stresses using qRT-PCR correlated well with in silico expression analysis. Thus, the present study provides a blueprint for the functional characterization of AtUSPs to ascertain their role under stress conditions. Moreover, AtUSP9 and AtUSP12 may also be used to engineer plants with improved tolerance against multiple stresses.


Abiotic stresses Arabidopsis Universal stress protein Multi-stress responsive In silico expression 



We thank the Council of Scientific and Industrial Research (CSIR) for funding in the form of network Project PlaGen (BSC0107). MB and PG thanks CSIR for providing JRF and SRF fellowships. This manuscript represents CSIR-IHBT Communication No. 3921.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40502_2019_468_MOESM1_ESM.pdf (31 kb)
Supplementary material 1 (PDF 31 kb).


  1. Ascencio-Ibanez, J. T., Sozzani, R., Lee, T. J., Chu, T. M., Wolfinger, R. D., Cella, R., et al. (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during Geminivirus infection. Plant Physiology, 148, 436–454.CrossRefGoogle Scholar
  2. Bhuria, M., Goel, P., Kumar, S., & Singh, A. K. (2016). The promoter of AtUSP is co-regulated by phytohormones and abiotic stresses in Arabidopsis thaliana. Frontiers in Plant Science, 7, 1957.CrossRefGoogle Scholar
  3. Bruex, A., Kainkaryam, R. M., Wieckowski, Y., Kang, Y. H., Bernhardt, C., Xia, Y., et al. (2012). A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genetics, 8, e1002446.CrossRefGoogle Scholar
  4. Cao, D., Cheng, H., Wu, W., Soo, H. M., & Peng, J. (2006). Gibberellin mobilizes distinct Della-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiology, 142, 509–525.CrossRefGoogle Scholar
  5. Chi, Y. H., Koo, S. S., Oh, H. T., Lee, E. S., Park, J. H., Phan, K. A. T., et al. (2019). The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Frontiers in Plant Science, 10, 750.CrossRefGoogle Scholar
  6. Gonzali, S., Loreti, E., Cardarelli, F., Novi, G., Parlanti, S., Pucciciariello, C., et al. (2015). Universal stress protein HRU1 mediates ROS homeostasis under anoxia. Nature Plants, 1, 15151.CrossRefGoogle Scholar
  7. Guan, Y., & Nothnagel, E. A. (2004). Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiology, 135, 1346–1366.CrossRefGoogle Scholar
  8. Gutierrez-Beltran, E., Personat, J. M., de la Torre, F., & Del Pozo, O. (2017). A universal stress protein involved in oxidative stress is a phosphorylation target for protein kinase CIPK6. Plant Physiology, 173, 836–852.CrossRefGoogle Scholar
  9. Isokpehi, R. D., Mahmud, O., Mbah, A. N., Simmons, S. S., Avelar, L., Rajnarayanan, R. V., et al. (2011a). Developmental regulation of genes encoding universal stress proteins in Schistosoma mansoni. Gene Regulation and Systems Biology, 5, 61–74.CrossRefGoogle Scholar
  10. Isokpehi, R. D., Simmons, S. S., Cohly, H. H., Ekunwe, S. I., Begonia, G. B., & Ayensu, W. K. (2011b). Identification of drought-responsive universal stress proteins in viridiplantae. Bioinformatics and Biology Insights, 5, 41–58.CrossRefGoogle Scholar
  11. Johnston, A. J., Meier, P., Gheyselinck, J., Wuest, S. E. J., Federer, M., Schlagenhauf, E., et al. (2007). Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biology, 8, R204.CrossRefGoogle Scholar
  12. Jones, M. A., Raymond, M. J., & Smirnoff, N. (2006). Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. The Plant Journal, 45, 83–100.CrossRefGoogle Scholar
  13. Jost, R., Pharmawati, M., Lapiz-Gaza, H. R., Rossig, C., Berkowitz, O., et al. (2015). Differentiating phosphate-dependent and phosphate independent systemic phosphate-starvation response networks in Arabidopsis thaliana through the application of phosphate. Journal of Experimental Botany, 66, 1–14.CrossRefGoogle Scholar
  14. Jung, J. J., Melenscion, S. B., Lee, E. S., Park, J. H., Alinapon, V. C., Oh, H. T., et al. (2015). Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Frontiers in Plant Science, 6, 1141.PubMedPubMedCentralGoogle Scholar
  15. Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., & Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant and Cell Physiology, 45, 712–722.CrossRefGoogle Scholar
  16. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007). The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50, 347–363.CrossRefGoogle Scholar
  17. Kushwaha, H. R., Singh, A. K., Sopory, S. K., Singla-Pareek, S. L., & Pareek, A. (2009). Genome-wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa (L.) reveals their developmental and stress regulation. BMC Genomics, 10, 200.CrossRefGoogle Scholar
  18. Kvint, K., Nachin, L., Diez, A., & Nystrom, T. (2003). The bacterial universal stress protein: Function and regulation. Current Opinion in Microbiology, 6, 140–145.CrossRefGoogle Scholar
  19. Lenman, M., Sorensson, C., & Andreasson, E. (2008). Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. Molecular Plant Microbe Interactions, 21, 1275–1284.CrossRefGoogle Scholar
  20. Li, J., Brader, G., & Palva, E. T. (2004). The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 16, 319–331.CrossRefGoogle Scholar
  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.CrossRefGoogle Scholar
  22. Loukehaich, R., Wang, T., Ouyang, Bo, Ziaf, K., Li, H., Zhang, J., et al. (2012). SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. Journal of Experimental Botany, 63, 5593–5606.CrossRefGoogle Scholar
  23. Melencion, S. M. B., Chi, Y. H., Pham, T. T., Paeng, S. K., Wi, S. D., Lee, C., et al. (2017). RNA chaperone function of a universal stress protein in Arabidopsis confers enhanced cold stress tolerance in plants. International Journal of Molecular Sciences, 18, E2546.CrossRefGoogle Scholar
  24. Merkouropoulos, G., Andreasson, E., Hess, D., Boller, T., & Peck, S. C. (2008). An Arabidopsis protein phosphorylated in response to microbial elicitation, AtPHOS32, is a substrate of MAP kinases 3 and 6. The Journal of Biological Chemistry, 283, 10493–10499.CrossRefGoogle Scholar
  25. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  26. Nachin, L., Nannmark, U., & Nystrom, T. (2005). Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. Journal of Bacteriology, 187, 6265–6272.CrossRefGoogle Scholar
  27. Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K., & Shigeoka, S. (2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. The Plant Journal, 48, 535–547.CrossRefGoogle Scholar
  28. Qin, Y., Leydon, A. R., Manziello, A., Pandey, R., Mount, D., Denic, S., et al. (2009). Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genetics, 5, e1000621.CrossRefGoogle Scholar
  29. Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: A free, open-source system for microarray data management and analysis. BioTechniques, 34, 374–378.CrossRefGoogle Scholar
  30. Sauter, M., Rzewuski, G., Marwedel, T., & Lorbiecke, R. (2002). The novel ethylene-regulated gene OsUSP1 from Oryza encodes a member of a plant protein family related to prokaryotic universal stress proteins. Journal of Experimental Botany, 53, 2325–2331.CrossRefGoogle Scholar
  31. Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., et al. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37, 501–506.CrossRefGoogle Scholar
  32. Shafi, A., Chauhan, R., Gill, T., Swarnkar, M. K., Sreenivasulu, Y., Kumar, S., et al. (2015). Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Molecular Biology, 87, 615–631.CrossRefGoogle Scholar
  33. Singh, A. K., Kumar, R., Tripathi, A. K., Gupta, B. K., Pareek, A., & Singla-Pareek, S. L. (2015). Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. Rice, 8, 21.CrossRefGoogle Scholar
  34. Singh, A. K., Sopory, S. K., Wu, R., & Singla-Pareek, S. L. (2010). Transgenic approaches. In A. Pareek, S. K. Sopory, H. J. Bohnert, & M. A. Govindjee (Eds.), Abiotic stress adaptation in plants: Physiological molecular and genomic foundation (pp. 418–438). Berlin: Springer.Google Scholar
  35. Sousa, M. C., & McKey, D. B. (2001). Structure of the universal stress protein of Haemophilus influenzae. Structure, 9, 1135–1141.CrossRefGoogle Scholar
  36. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Currrnt Opinon in Biotechnology, 17, 113–122.CrossRefGoogle Scholar
  37. Wang, X. F., Su, J., Yang, N., Zhang, H., Cao, X. Y., & Kang, J. F. (2017). Functional characterization of selected universal stress protein from Salvia miltiorrhiza (SmUSP) in Escherichia coli. Genes Basel, 8, E224.CrossRefGoogle Scholar
  38. Wang, Y., Zhang, W. Z., Song, L. F., Zou, J. J., Su, Z., & Wu, W. H. (2008). Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiology, 148, 1201–1211.CrossRefGoogle Scholar
  39. Wiborg, J., O’Shea, C., & Skriver, K. (2008). Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. The Biochemical Journal, 413, 447–457.CrossRefGoogle Scholar
  40. Xiong, L., Schumaker, K. S., & Zhu, J. K. (2002). Cell signaling during cold, drought, and salt stress. The Plant Cell, 14(Suppl), S165–S183.CrossRefGoogle Scholar
  41. Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S., & Shinozaki, K. (1992). Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant and Cell Physiology, 33(3), 217–224.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  2. 2.Academy of Scientific and Innovative ResearchNew DelhiIndia
  3. 3.School of Genetic EngineeringICAR-Indian Institute of Agricultural BiotechnologyRanchiIndia

Personalised recommendations