Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 697–720 | Cite as

Molecular breeding approaches involving physiological and reproductive traits for heat tolerance in food crops

  • Manu Priya
  • K. H. M. Siddique
  • O. P. Dhankhar
  • P. V. Vara Prasad
  • Bindumadhava Hanumantha Rao
  • Ramakrishnan M. Nair
  • Harsh NayyarEmail author
Review Article


Heat stress is a significant threat that limits crop yield and fecundity all over the world. Prevalent strategies for heat adaptation that alter technical and management systems are inadequate to sustain yield. As such, the identification of heat-tolerant genotypes with improved yield potential is crucial. Raising tolerant and stable cultivars can be tedious as heat-stress responses are highly variable across different developmental stages. While molecular breeding has progressed in engineering heat-tolerant lines, the complexity of genetic networks and divergence of heat tolerance mechanisms is the main hindrance for plant breeders. Hence, insight into the physiological and reproductive traits associated with heat tolerance could assist in the development of strategies to screen germplasm for heat tolerance. Exploitation and use of landraces and wild relatives in breeding may enhance favorable genetic diversity in crop plants. A holistic approach to delineate molecular markers, where quantitative trait loci (QTLs) for different traits linked to heat tolerance involving physiological and reproductive traits are characterized in well-controlled field environments, may be an option for optimizing germplasm under heat stress. Here, we present an outline of the effects of heat stress and its associated tolerance mechanisms in food crops, along with some physiological, molecular and reproductive characteristics such as ‘stay-green,’ membrane thermostability, canopy temperature depression, metabolites, genes, QTLs, and pollen fertility. Further, we provide information on conventional and molecular breeding approaches as well as different selection strategies for heat stress tolerance.


Heat stress Genes QTL HSP Traits Plant breeding Thermotolerance 



The first author (MP) is thankful to CSIR-UGC, New Delhi, India, for financial support in the form of a fellowship. The corresponding author (HN) is thankful to UGC, CSIR, DST, New Delhi (for PURSE grant), University of Western Australia, Australia, DST (India), DEST (Australia), ICARDA, Morocco, World Vegetable Center (at ICRISAT) for financially supporting our work on heat stress.


  1. Abro, S., Rajput, M. T., Khan, M. A., Sial, M. A., & Tahir, S. S. (2015). Screening of cotton (Gossypium hirsutum L.) genotypes for heat tolerance. Pakistan Journal of Botany, 47(6), 2085–2091.Google Scholar
  2. Ahmad, P., & Prasad, M. N. V. (2011). Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science & Business Media. pp. (1–19).Google Scholar
  3. Ahlawat, S., Chhabra, A. K., Behl, R. K., & Bisht, S. S. (2008). Genotypic divergence analysis for stay green characters in wheat (Triticum aestivum L. em. Thell). The South Pacific Journal of Natural and Applied Sciences, 26(1), 73–81.CrossRefGoogle Scholar
  4. Almeida, G. D., Nair, S., Borém, A., Cairns, J., Trachsel, S., Ribaut, J.-M., et al. (2014). Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Molecular Breeding, 34(2), 701–715.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amani, I., Fischer, R. A., & Reynolds, M. P. (1996). Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. Journal of Agronomy and Crop Science, 176(2), 119–129.CrossRefGoogle Scholar
  6. Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163–190.CrossRefGoogle Scholar
  8. Asthir, B. (2015). Protective mechanisms of heat tolerance in crop plants. Journal of Plant Interactions, 10(1), 202–210.CrossRefGoogle Scholar
  9. Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J., Siddique, K. H. M., et al. (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 41(11), 1148–1167.CrossRefGoogle Scholar
  10. Awika, H. O., Hays, D. B., Mullet, J. E., Rooney, W. L., & Weers, B. D. (2017). QTL mapping and loci dissection for leaf epicuticular wax load and canopy temperature depression and their association with QTL for staygreen in Sorghum bicolor under stress. Euphytica, 213(9), 207.CrossRefGoogle Scholar
  11. Bac-Molenaar, J. A., Fradin, E. F., Becker, F. F. M., Rienstra, J. A., van der Schoot, J., Vreugdenhil, D., et al. (2015). Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. The Plant, Cell, tpc-15.Google Scholar
  12. Bala, P., & Sikder, S. (2017). Heat stress indices, correlation and regression analysis of wheat genotypes for yield potential. International Journal of Current Agricultural Sciences, 7(4), 190–194.Google Scholar
  13. Baliuag, N. N. A., Redona, E. D., Hernandez, J. E., Cruz, P. C. S., & Ye, C. (2015). Genetic analysis for heat tolerance and early morning flowering traits at flowering stage in rice (Oryza sativa L.). Philippine Journal of Crop Science (PJCS), 40(3), 62–72.Google Scholar
  14. Balota, M., Payne, W. A., Evett, S. R., & Peters, T. R. (2008). Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Science, 48(5), 1897–1910.CrossRefGoogle Scholar
  15. Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11–38.PubMedGoogle Scholar
  16. Benites, F. R. G., & Pinto, C. A. B. P. (2011). Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breeding and Applied Biotechnology, 11(2), 133–140.CrossRefGoogle Scholar
  17. Bhusal, N., Sarial, A. K., Sharma, P., & Sareen, S. (2017). Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE, 12(12), e0189594.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bishop, J., Potts, S. G., & Jones, H. E. (2016). Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. Journal of Agronomy and Crop Science, 202(6), 508–517.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Blum, A., Klueva, N., & Nguyen, H. T. (2001). Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 117(2), 117–123.CrossRefGoogle Scholar
  21. Bohnert, H. J., Gong, Q., Li, P., & Ma, S. (2006). Unraveling abiotic stress tolerance mechanisms–getting genomics going. Current Opinion in Plant Biology, 9(2), 180–188.PubMedCrossRefGoogle Scholar
  22. Boote, K. J., Allen, L. H., Prasad, P. V. V., Baker, J. T., Gesch, R. W., Snyder, A. X., Pan, D., & Thomas, J. M. G. (2005). Elevated Temperature and CO2 Impacts on Pollination, Reproductive Growth, and Yield of Several Globally Important Crops. Journal of Agricultural Meteorology 60(5), 469–474.CrossRefGoogle Scholar
  23. Borrell, A. K., Oosterom, E. J., Mullet, J. E., George-Jaeggli, B., Jordan, D. R., Klein, P. E., et al. (2014). Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytologist, 203(3), 817–830.PubMedCrossRefGoogle Scholar
  24. Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., et al. (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE, 5(3), e9514.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Branham, S. E., Stansell, Z. J., Couillard, D. M., & Farnham, M. W. (2017). Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theoretical and Applied Genetics, 130(3), 529–538.PubMedCrossRefGoogle Scholar
  26. Brestic, M., Zivcak, M., Olsovska, K., & Repkova, J. (2013). Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. Photosynthesis research for food, fuel and the future (pp. 510–513). Berlin: Springer.Google Scholar
  27. Burke, J. J., & Chen, J. (2015). Enhancement of reproductive heat tolerance in plants. PLoS ONE, 10(4), e0122933.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62–70.PubMedCrossRefGoogle Scholar
  29. Cairns, J. E., Crossa, J., Zaidi, P. H., Grudloyma, P., Sanchez, C., Araus, J. L., et al. (2013). Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Science, 53(4), 1335–1346.CrossRefGoogle Scholar
  30. Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162(3), 281–289.PubMedCrossRefGoogle Scholar
  31. Chandra, K., Prasad, R., Thakur, P., Madhukar, K., & Prasad, L. C. (2017). Heat tolerance in wheat-a key strategy to combat climate change through molecular markers. International Journal of Current Microbiology and Applied Sciences, 6(3), 662–675.CrossRefGoogle Scholar
  32. Chauhan, S., Srivalli, S., Nautiyal, A. R., & Khanna-Chopra, R. (2009). Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 47(4), 536–547.CrossRefGoogle Scholar
  33. Chebrolu, K. K., Fritschi, F. B., Ye, S., Krishnan, H. B., Smith, J. R., & Gillman, J. D. (2016). Impact of heat stress during seed development on soybean seed metabolome. Metabolomics, 12(2), 28.CrossRefGoogle Scholar
  34. Chen, L.-S., Li, P., & Cheng, L. (2009). Comparison of thermotolerance of sun-exposed peel and shaded peel of ‘Fuji’apple. Environmental and Experimental Botany, 66(1), 110–116.CrossRefGoogle Scholar
  35. Chen, Y., Müller, F., Rieu, I., & Winter, P. (2016). Epigenetic events in plant male germ cell heat stress responses. Plant Reproduction, 29(1–2), 21–29.PubMedCrossRefGoogle Scholar
  36. Chiang, C.-M., Chen, S.-P., Chen, L.-F. O., Chiang, M.-C., Chien, H.-L., & Lin, K.-H. (2014). Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 266–277.CrossRefGoogle Scholar
  37. Chiang, C. M., Chien, H. L., Chen, L. F. O., Hsiung, T. C., Chiang, M. C., Chen, S. P., et al. (2015). Overexpression of the genes coding ascorbate peroxidase from Brassica campestris enhances heat tolerance in transgenic Arabidopsis thaliana. Biologia Plantarum, 59(2), 305–315.CrossRefGoogle Scholar
  38. Condon, A. G., Reynolds, M. P., Rebetzke, G. J., Van Ginkel, M., Richards, R. A., & Farquhar, G. D. (2007). Using stomatal aperture-related traits to select for high yield potential in bread wheat. Wheat production in stressed environments (pp. 617–624). Berlin: Springer.Google Scholar
  39. Cornish, K., Radin, J. W., Turcotte, E. L., Lu, Z., & Zeiger, E. (1991). Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiology, 97(2), 484–489.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Correia, B., Valledor, L., Meijón, M., Rodriguez, J. L., Dias, M. C., Santos, C., et al. (2013). Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE, 8(1), e53543.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cottee, N. S., Tan, D. K. Y., Bange, M. P., Cothren, J. T., & Campbell, L. C. (2010). Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Science, 50(6), 2553–2564.CrossRefGoogle Scholar
  42. Das, G., & Rao, G. J. N. (2015). Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Frontiers in plant science, 6, 698.PubMedPubMedCentralGoogle Scholar
  43. Das, S., Krishnan, P., Nayak, M., & Ramakrishnan, B. (2014). High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 101, 36–46.CrossRefGoogle Scholar
  44. de Luche, H. S., da Silva, J. A. G., da Maia, L. C., & de Oliveira, A. C. (2015). Stay-green: A potentiality in plant breeding. Ciência Rural, 45(10), 1755–1760.CrossRefGoogle Scholar
  45. de Souza, M. A., Pimentel, A. J. B., & Ribeiro, G. (2012). Breeding for heat-stress tolerance. Plant breeding for abiotic stress tolerance (pp. 137–156). Berlin: Springer.CrossRefGoogle Scholar
  46. Debnath, S., Gazal, A., Yadava, P., & Singh, I. (2016). Identification of contrasting genotypes under heat stress in maize (Zea mays L.). Maize Journal, 5(1–2), 14–24.Google Scholar
  47. Demİrel, U., Çopur, O., & Gür, A. (2016). Early-stage screening for heat tolerance in cotton. Plant Breeding, 135(1), 80–89.CrossRefGoogle Scholar
  48. Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Raju, T. N., Trethowan, R. M., & Tan, D. K. Y. (2013). Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research, 142, 9–19.CrossRefGoogle Scholar
  49. Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Tokachichu, R. N., Trethowan, R. M., & Tan, D. K. Y. (2012). Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 39(12), 1009–1018.CrossRefGoogle Scholar
  50. Devasirvatham, V., Tan, D. K. Y., & Trethowan, R. M. (2016). Breeding strategies for enhanced plant tolerance to heat stress. Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 447–469). Berlin: Springer.CrossRefGoogle Scholar
  51. Dias, M. C., & Brüggemann, W. (2010). Limitations of photosynthesis in Phaseolus vulgaris under drought stress: Gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48(1), 96–102.CrossRefGoogle Scholar
  52. Djanaguiraman, M., Prasad, P. V. V., Boyle, D. L., & Schapaugh, W. T. (2011). High-temperature stress and soybean leaves: Leaf anatomy and photosynthesis. Crop Science, 51(5), 2125–2131.CrossRefGoogle Scholar
  53. Dong, X., Yi, H., Lee, J., Nou, I.-S., Han, C.-T., & Hur, Y. (2015). Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS ONE, 10(6), e0130451.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29(1–2), 67–79.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ehlers, R.-U., Oestergaard, J., Hollmer, S., Wingen, M., & Strauch, O. (2005). Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophora–Photorhabdus luminescens. BioControl, 50(5), 699–716.CrossRefGoogle Scholar
  56. Erice, G., Irigoyen, J. J., Pérez, P., Martínez-Carrasco, R., & Sánchez-Díaz, M. (2006). Effect of elevated CO2, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa. Plant Science, 170(6), 1059–1067.CrossRefGoogle Scholar
  57. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Farnham, M. W., & Bjorkman, T. (2011). Breeding vegetables adapted to high temperatures: a case study with broccoli. Hort Science, 46(8), 1093–1097.Google Scholar
  59. Feng, B., Liu, P., Li, G., Dong, S. T., Wang, F. H., Kong, L. A., et al. (2014). Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. Journal of Agronomy and Crop Science, 200(2), 143–155.CrossRefGoogle Scholar
  60. Fischer, R. A., Rees, D., Sayre, K. D., Lu, Z.-M., Condon, A. G., & Saavedra, A. L. (1998). Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science, 38(6), 1467–1475.CrossRefGoogle Scholar
  61. Folsom, J. J., Begcy, K., Hao, X., Wang, D., & Walia, H. (2014). Rice FIE1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiology, 165, 238.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., et al. (2009). Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of Experimental Botany, 60(13), 3891–3908.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Frey, F. P., Presterl, T., Lecoq, P., Orlik, A., & Stich, B. (2016). First steps to understand heat tolerance of temperate maize at adult stage: Identification of QTL across multiple environments with connected segregating populations. Theoretical and Applied Genetics, 129, 945–961.PubMedCrossRefGoogle Scholar
  64. Frey, F. P., Urbany, C., Hüttel, B., Reinhardt, R., & Stich, B. (2015). Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. BMC Genomics, 16, 123.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Frova, C., & Sari-Gorla, M. (1994). Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Molecular and General Genetics MGG, 245, 424–430.PubMedCrossRefGoogle Scholar
  66. Fu, J.-D., Yan, Y.-F., Kim, M. Y., Lee, S.-H., & Lee, B.-W. (2011). Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome, 54, 235–243.PubMedCrossRefGoogle Scholar
  67. Gao, G., Li, J., Li, H., Li, F., Xu, K., Yan, G., et al. (2014). Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breeding Science, 64, 125–133.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gaur, P. M., Jukanti, A. K., Samineni, S., Chaturvedi, S. K., Basu, P. S., Babbar, A., et al. (2013). Climate change and heat stress tolerance in chickpea. Climate Change and Plant Abiotic Stress, Tolerance, 837–856.CrossRefGoogle Scholar
  69. Gaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of genomic technologies on chickpea breeding strategies. Agronomy, 2(3), 199–221.CrossRefGoogle Scholar
  70. Gautam, A., Agrawal, D., SaiPrasad, S. V., & Jajoo, A. (2014). A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiology and Molecular Biology of Plants, 20(4), 533–537.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gororo, N. N., Eagles, H. A., Eastwood, R. F., Nicolas, M. E., & Flood, R. G. (2002). Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica, 123(2), 241–254.CrossRefGoogle Scholar
  72. Gottardini, E., Cristofori, A., Cristofolini, F., Nali, C., Pellegrini, E., Bussotti, F., et al. (2014). Chlorophyll-related indicators are linked to visible ozone symptoms: evidence from a field study on native Viburnum lantana L. plants in northern Italy. Ecological Indicators, 39, 65–74.CrossRefGoogle Scholar
  73. Gous, P. W., Hickey, L., Christopher, J. T., Franckowiak, J., & Fox, G. P. (2016). Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica, 207(2), 305–317.CrossRefGoogle Scholar
  74. Greer, D. H., & Weedon, M. M. (2012). Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant, Cell and Environment, 35(6), 1050–1064.PubMedCrossRefGoogle Scholar
  75. Grilli, G. V. G., Braz, L. T., & Lemos, E. G. M. (2007). QTL identification for tolerance to fruit set in tomato by fAFLP markers. Crop Breeding and Applied, Biotechnology, 234–241.CrossRefGoogle Scholar
  76. Grover, A., Mittal, D., Negi, M., & Lavania, D. (2013). Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Science, 205, 38–47.PubMedCrossRefGoogle Scholar
  77. Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. In Proceedings of the national academy of sciences (p. 201320008).Google Scholar
  78. Guo, W., Zhang, J., Zhang, N., Xin, M., Peng, H., Hu, Z., et al. (2015). The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis. PLoS ONE, 10(8), e0135667.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35(6), 1837–1842.CrossRefGoogle Scholar
  80. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132(2), 220–235.PubMedGoogle Scholar
  81. Han, F., Chen, H., Li, X.-J., Yang, M.-F., Liu, G.-S., & Shen, S.-H. (2009). A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794(11), 1625–1634.CrossRefGoogle Scholar
  82. Harsant, J., Pavlovic, L., Chiu, G., Sultmanis, S., & Sage, T. L. (2013). High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. Journal of Experimental Botany, 64(10), 2971–2983.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.CrossRefGoogle Scholar
  84. Hemantaranjan, A., Bhanu, A. N., Singh, M. N., Yadav, D. K., Patel, P. K., Singh, R., et al. (2014). Heat stress responses and thermotolerance. Advances in Plants and Agricultural Research, 1(12), 10–15406.Google Scholar
  85. Hofmann, G. E., & Todgham, A. E. (2010). Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology, 72, 127–145.PubMedCrossRefGoogle Scholar
  86. Hu, Z., Song, N., Zheng, M., Liu, X., Liu, Z., Xing, J., et al. (2015a). Histone acetyltransferase GCN 5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. The Plant Journal, 84(6), 1178–1191.PubMedCrossRefGoogle Scholar
  87. Hu, X., Yang, Y., Gong, F., Zhang, D., Zhang, L., Wu, L., et al. (2015b). Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Journal of Proteomics, 115, 81–92.PubMedCrossRefGoogle Scholar
  88. Hüttner, S., & Strasser, R. (2012). Endoplasmic reticulum-associated degradation of glycoproteins in plants. Frontiers in Plant Science, 3, 67.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Huynh, B., Ehlers, J. D., Huang, B. E., Muñoz-Amatriaín, M., Lonardi, S., Santos, J. R. P., et al. (2018). A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). The Plant Journal, 93(6), 1129–1142.PubMedCrossRefGoogle Scholar
  90. i Azam, F., Chang, X., & Jing, R. (2015). Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. Euphytica, 202(2), 245–258.CrossRefGoogle Scholar
  91. Ismail, A. M., & Hall, A. E. (1999). Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science, 39(6), 1762–1768.CrossRefGoogle Scholar
  92. Jacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405–414.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Jagadish, S. V. K., Cairns, J., Lafitte, R., Wheeler, T. R., Price, A. H., & Craufurd, P. Q. (2010). Genetic analysis of heat tolerance at anthesis in rice. Crop Science, 50(5), 1633–1641.CrossRefGoogle Scholar
  94. Jagadish, K. S. V., Craufurd, P., Shi, W., & Oane, R. (2014). A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Functional Plant Biology, 41(1), 48–55.CrossRefGoogle Scholar
  95. Jagadish, S. V. K., Craufurd, P. Q., & Wheeler, T. R. (2008). Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Science, 48(3), 1140–1146.CrossRefGoogle Scholar
  96. Jenks, M. A., & Hasegawa, P. M. (2008). Plant abiotic stress. London: Wiley.Google Scholar
  97. Jha, U. C., Bohra, A., Parida, S. K., & Jha, R. (2017). Integrated “omics” approaches to sustain global productivity of major grain legumes under heat stress. Plant Breeding, 136(4), 437–459.CrossRefGoogle Scholar
  98. Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133(6), 679–701.CrossRefGoogle Scholar
  99. Jiang, H., Li, M., Liang, N., Yan, H., Wei, Y., Xu, X., et al. (2007). Molecular cloning and function analysis of the stay green gene in rice. The Plant Journal, 52(2), 197–209.PubMedCrossRefGoogle Scholar
  100. Jiang, Y., Zheng, Q., Chen, L., Liang, Y., & Wu, J. (2018). Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis. Acta Physiologiae Plantarum, 40(1), 9.CrossRefGoogle Scholar
  101. Joshi, A. K., Kumari, M., Singh, V. P., Reddy, C. M., Kumar, S., Rane, J., et al. (2007). Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica, 153(1–2), 59–71.Google Scholar
  102. Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., et al. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 102.CrossRefGoogle Scholar
  103. Karademir, E., Karademir, Ç., Ekinci, R., Başbağ, S., & Başal, H. (2012). Screening cotton varieties (Gossypium hirsutum L.) for heat tolerance under field conditions. African Journal of Agricultural Research, 7 (47), 6335–6342.Google Scholar
  104. Katiyar-Agarwal, S., Agarwal, M., & Grover, A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology, 51(5), 677–686.PubMedCrossRefGoogle Scholar
  105. Kato, K., Miura, H., & Sawada, S. (2000). Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theoretical and Applied Genetics, 101(7), 1114–1121.CrossRefGoogle Scholar
  106. Kaur, R., Bains, T. S., Bindumadhava, H., & Nayyar, H. (2015). Responses of mungbean (Vigna radiata L.) genotypes to heat stress: Effects on reproductive biology, leaf function and yield traits. Scientia Horticulturae, 197, 527–541.CrossRefGoogle Scholar
  107. Kaushal, N., Awasthi, R., Gupta, K., Gaur, P., Siddique, K. H. M., & Nayyar, H. (2013). Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Functional Plant Biology, 40(12), 1334–1349.CrossRefGoogle Scholar
  108. Kaushal, N., Bhandari, K., Siddique, K. H. M., & Nayyar, H. (2016). Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food and Agriculture, 2(1), 1134380.CrossRefGoogle Scholar
  109. Kim, M. D., Kim, Y., Kwon, S., Yun, D., Kwak, S., & Lee, H. (2010). Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiologia Plantarum, 140(2), 153–162.PubMedCrossRefGoogle Scholar
  110. Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Kumar, N., et al. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4(4), 83–91.Google Scholar
  111. Kumar, U., Joshi, A. K., Kumari, M., Paliwal, R., Kumar, S., & Röder, M. S. (2010). Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica, 174(3), 437–445.CrossRefGoogle Scholar
  112. Kumar, S., Thakur, P., Kaushal, N., Malik, J. A., Gaur, P., & Nayyar, H. (2013). Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archives of Agronomy and Soil Science, 59(6), 823–843.CrossRefGoogle Scholar
  113. Kumari, M., Pudake, R. N., Singh, V. P., & Joshi, A. K. (2013). Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica, 190(1), 87–97.CrossRefGoogle Scholar
  114. Kumari, M., Singh, V. P., Tripathi, R., & Joshi, A. K. (2007). Variation for staygreen trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. Wheat production in stressed environments (pp. 357–363). Berlin: Springer.Google Scholar
  115. Kusaba, M., Tanaka, A., & Tanaka, R. (2013). Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence. Photosynthesis Research, 117(1–3), 221–234.PubMedCrossRefGoogle Scholar
  116. Lafarge, T., Bueno, C., Frouin, J., Jacquin, L., Courtois, B., & Ahmadi, N. (2017). Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS ONE, 12(2), e0171254.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18(1), 124.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lavania, D., Siddiqui, M. H., Al-Whaibi, M. H., Singh, A. K., Kumar, R., & Grover, A. (2015). Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.). Acta Physiologiae Plantarum, 37(1), 1737.CrossRefGoogle Scholar
  119. Lee, K. W., Cha, J. Y., Mun, J. Y., Lee, B. H., Kim, Y. G., & Lee, S. H. (2015). Heterologous expression of Mshsp23, a Medicago Sativa small heat shock protein, enhances heat stress tolerance in creeping bentgrass. Journal of Animal and Plant Sciences, 25, 884–891.Google Scholar
  120. Lee, K.-W., Rahman, M., Choi, G. J., Kim, K.-Y., Ji, H. C., Hwang, T. Y., et al. (2017). Expression of small heat shock protein23 enhanced heat stress tolerance in transgenic alfaalfa plants. JAPS: Journal of Animal and Plant Sciences, 27(4), 1238.Google Scholar
  121. Lee, K.-W., Rahman, M. A., Kim, K.-Y., Choi, G. J., Cha, J.-Y., Cheong, M. S., et al. (2018). Overexpression of the alfalfa DnaJ-like protein (MsDJLP) gene enhances tolerance to chilling and heat stresses in transgenic tobacco plants. Turkish Journal of Biology, 42(1), 12–22.CrossRefGoogle Scholar
  122. Li, S., Fu, Q., Chen, L., Huang, W., & Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 233(6), 1237–1252.PubMedCrossRefGoogle Scholar
  123. Li, H., Hu, T., Amombo, E., & Fu, J. (2017). Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. Journal of Plant Physiology, 213, 157–165.PubMedCrossRefGoogle Scholar
  124. Li, X., Lawas, L. M. F., Malo, R., Glaubitz, U., Erban, A., Mauleon, R., et al. (2015). Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant, Cell and Environment, 38(10), 2171–2192.PubMedCrossRefGoogle Scholar
  125. Li, M., Li, Z., Li, S., Guo, S., Meng, Q., Li, G., et al. (2014a). Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Molecular Biology Reporter, 32(1), 42–51.CrossRefGoogle Scholar
  126. Li, S., Liu, J., Liu, Z., Li, X., Wu, F., & He, Y. (2014b). Heat-induced tas1 target1 mediates thermotolerance via heat stress transcription factor A1a–directed pathways in Arabidopsis. The Plant, Cell, tpc-114.Google Scholar
  127. Li, Q., Wang, W., Wang, W., Zhang, G., Liu, Y., Wang, Y., et al. (2018). Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Frontiers in Plant Science, 9, 521.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Liao, J., Zhang, H., Shao, X., Zhong, P., & Huang, Y. (2011). Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Science, 18(4), 279–286.CrossRefGoogle Scholar
  129. Liberek, K., Lewandowska, A., & Ziętkiewicz, S. (2008). Chaperones in control of protein disaggregation. The EMBO Journal, 27(2), 328–335.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lin, H., Li, X., Gao, J., Junxiang, S., & Shi, M. (2018). New rice high temperature resistance gene and use in crop breeding resistance to high temperature thereof. Google Patents. Google Scholar
  131. Liu, J., Feng, L., Li, J., & He, Z. (2015). Genetic and epigenetic control of plant heat responses. Frontiers in Plant Science, 6, 267.PubMedPubMedCentralGoogle Scholar
  132. Liu, G.-T., Wang, J.-F., Cramer, G., Dai, Z.-W., Duan, W., Xu, H.-G., et al. (2012). Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biology, 12(1), 174.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lucas, M. R., Ehlers, J. D., Huynh, B. L., Diop, N. N., Roberts, P. A., & Close, T. J. (2013). Markers for breeding heat-tolerant cowpea. Molecular breeding, 31(3), 529–536.CrossRefGoogle Scholar
  134. Maavimani, M., & Saraswathi, R. (2014). Anther characteristics and spikelet fertility in rice (Oryza sativa L.) under high temperature stress at anthesis. Indian Journal of Genetics and Plant Breeding (The), 74(3), 300–308.CrossRefGoogle Scholar
  135. Madan, P., Jagadish, S. V. K., Craufurd, P. Q., Fitzgerald, M., Lafarge, T., & Wheeler, T. R. (2012). Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. Journal of Experimental Botany, 63(10), 3843–3852.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Malaspina, P., Giordani, P., Faimali, M., Garaventa, F., & Modenesi, P. (2014). Assessing photosynthetic biomarkers in lichen transplants exposed under different light regimes. Ecological Indicators, 43, 126–131.CrossRefGoogle Scholar
  137. Mangelsen, E., Kilian, J., Harter, K., Jansson, C., Wanke, D., & Sundberg, E. (2011). Transcriptome analysis of high-temperature stress in developing barley caryopses: Early stress responses and effects on storage compound biosynthesis. Molecular Plant, 4(1), 97–115.PubMedCrossRefGoogle Scholar
  138. Marcum, K. B. (1998). Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Science, 38(5), 1214–1218.CrossRefGoogle Scholar
  139. Martineau, J. R., Specht, J. E., Williams, J. H., & Sullivan, C. Y. (1979). Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability 1. Crop Science, 19(1), 75–78.CrossRefGoogle Scholar
  140. Mason, R. E., Mondal, S., Beecher, F. W., Pacheco, A., Jampala, B., Ibrahim, A. M. H., et al. (2010). QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174(3), 423–436.CrossRefGoogle Scholar
  141. Mason, R. E., & Singh, R. P. (2014). Considerations when deploying canopy temperature to select high yielding wheat breeding lines under drought and heat stress. Agronomy, 4(2), 191–201.CrossRefGoogle Scholar
  142. Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116–126.CrossRefGoogle Scholar
  143. Matsui, T., & Omasa, K. (2002). Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Annals of Botany, 89(6), 683–687.PubMedPubMedCentralCrossRefGoogle Scholar
  144. McCue, A. D., Panda, K., Nuthikattu, S., Choudury, S. G., Thomas, E. N., & Slotkin, R. K. (2014). ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. The EMBO Journal, 34, e201489499.Google Scholar
  145. Mesihovic, A., Iannacone, R., Firon, N., & Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reproduction, 29(1–2), 93–105.PubMedCrossRefGoogle Scholar
  146. Min, L., Li, Y., Hu, Q., Zhu, L., Gao, W., Wu, Y., et al. (2014). Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiology, 178, 113.Google Scholar
  147. Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19.PubMedCrossRefGoogle Scholar
  148. Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37(3), 118–125.PubMedCrossRefGoogle Scholar
  149. Morrison, M. J., & Stewart, D. W. (2002). Heat stress during flowering in summer Brassica. Crop Science, 42(3), 797–803.CrossRefGoogle Scholar
  150. Muchero, W., Roberts, P. A., Diop, N. N., Drabo, I., Cisse, N., Close, T. J., et al. (2013). Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE, 8(7), e70041.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., & Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science, 287(5452), 476–479.PubMedCrossRefGoogle Scholar
  152. Nagarajan, S., Jagadish, S. V. K., Prasad, A. S. H., Thomar, A. K., Anand, A., Pal, M., et al. (2010). Local climate affects growth, yield and grain quality of aromatic and non-aromatic rice in northwestern India. Agriculture, Ecosystems & Environment, 138(3–4), 274–281.CrossRefGoogle Scholar
  153. Naveed, M., Ahsan, M., Akram, H. M., Aslam, M., & Ahmed, N. (2016). Genetic effects conferring heat tolerance in a cross of tolerant × susceptible maize (Zea mays L.) genotypes. Frontiers in Plant Science, 7, 729.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Nawaz, A., Farooq, M., Cheema, S. A., & Wahid, A. (2013). Differential response of wheat cultivars to terminal heat stress. International Journal of Agriculture and Biology, 15(6), 1354.Google Scholar
  155. Naydenov, M., Baev, V., Apostolova, E., Gospodinova, N., Sablok, G., Gozmanova, M., et al. (2015). High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiology and Biochemistry, 87, 102–108.PubMedCrossRefGoogle Scholar
  156. Norvie, L. M., Lambio, L. A. F., Luvina, B., & Cardenas, C. C. (2014). Germplasm innovation of heat tolerance in rice (Oryza sativa) for irrigated lowland conditions in the Philippines. Rice Science, 21, 162.CrossRefGoogle Scholar
  157. Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69(19), 3225–3243.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 22(1), 53–65.PubMedCrossRefGoogle Scholar
  159. Ono, K., Hibino, T., Kohinata, T., Suzuki, S., Tanaka, Y., Nakamura, T., et al. (2001). Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperatue tolerance of tobacco during germination and early growth. Plant Science, 160(3), 455–461.PubMedCrossRefGoogle Scholar
  160. Ottaviano, E., Gorla, M. S., Pe, E., & Frova, C. (1991). Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize. Theoretical and Applied Genetics, 81(6), 713–719.PubMedCrossRefGoogle Scholar
  161. Panigrahy, M., Neelamraju, S., Rao, D. N., & Ramanan, R. (2011). Heat tolerance in rice mutants is associated with reduced accumulation of reactive oxygen species. Biologia Plantarum, 55(4), 721.CrossRefGoogle Scholar
  162. Park, C.-J., & Seo, Y.-S. (2015). Heat shock proteins: A review of the molecular chaperones for plant immunity. The Plant Pathology Journal, 31(4), 323.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Parry, M. A. J., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X.-G., et al. (2010). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 62(2), 453–467.PubMedCrossRefGoogle Scholar
  164. Paul, S., Das, M. K., Baishya, P., Ramteke, A., Farooq, M., Baroowa, B., et al. (2017). Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars. Scientia Horticulturae, 225, 134–140.CrossRefGoogle Scholar
  165. Paul, P. J., Samineni, S., Sajja, S. B., Rathore, A., Das, R. R., Chaturvedi, S. K., et al. (2018a). Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica, 214(2), 27.CrossRefGoogle Scholar
  166. Paul, P. J. N., Samineni, S., Thundi, M., Sajja, S. B., Rathore, A., Das, R. R., et al. (2018b). Molecular mapping of QTLs associated with heat tolerance in chickpea. Internnational Journal of Molecular Science, 19, E2166. Scholar
  167. Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6), 130.CrossRefGoogle Scholar
  168. Pecinka, A., & Mittelsten Scheid, O. (2012). Stress-induced chromatin changes: a critical view on their heritability. Plant and Cell Physiology, 53(5), 801–808.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Petolino, J. F., Cowen, N. M., Thompson, S. A., & Mitchell, J. C. (1992). Gamete selection for heat stress tolerance in maize. Angiosperm pollen and ovules (pp. 355–358). Berlin: Springer.CrossRefGoogle Scholar
  170. Peverelli, M. C., & Rogers, W. J. (2013). Heat stress effects on crop performance and tools for tolerance breeding. Revista de la FCA UNCUYO, 45(2), 349.Google Scholar
  171. Pinto, R. S., Lopes, M. S., Collins, N. C., & Reynolds, M. P. (2016). Modelling and genetic dissection of staygreen under heat stress. Theoretical and Applied Genetics, 129(11), 2055–2074.PubMedCrossRefGoogle Scholar
  172. Poli, Y., Basava, R. K., Panigrahy, M., Vinukonda, V. P., Dokula, N. R., Voleti, S. R., et al. (2013). Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 6(1), 36.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Porch, T. G. (2006). Application of stress indices for heat tolerance screening of common bean. Journal of Agronomy and Crop Science, 192(5), 390–394.CrossRefGoogle Scholar
  174. Pottorff, M., Roberts, P. A., Close, T. J., Lonardi, S., Wanamaker, S., & Ehlers, J. D. (2014). Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp]. BMC Genomics, 15(1), 328.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Pradhan, G. P., Prasad, P. V. V., Fritz, A. K., Kirkham, M. B., & Gill, B. S. (2012). High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Science, 52(1), 292–304.CrossRefGoogle Scholar
  176. Prasad, P. V. V., Bheemanahalli, R., & Jagadish, S. V. K. (2017). Field crops and the fear of heat stress: Opportunities, challenges and future directions. Field Crops Research, 200, 114–121.CrossRefGoogle Scholar
  177. Prasad, P. V. V., Boote, K. J., Allen, L. H., Jr., & Thomas, J. M. G. (2002). Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 8(8), 710–721.CrossRefGoogle Scholar
  178. Qin, D., Wang, F., Geng, X., Zhang, L., Yao, Y., Ni, Z., et al. (2015). Overexpression of heat stress-responsive TaMBF1c, a wheat (Triticum aestivum L.) multiprotein bridging factor, confers heat tolerance in both yeast and rice. Plant Molecular Biology, 87(1–2), 31–45.PubMedCrossRefGoogle Scholar
  179. Qu, A.-L., Ding, Y.-F., Jiang, Q., & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432(2), 203–207.PubMedCrossRefGoogle Scholar
  180. Rahaman, M., Mamidi, S., & Rahman, M. (2017). Association mapping of agronomic traits of canola (“Brassica napus” L.) subject to heat stress under field conditions. Australian Journal of Crop Science, 11(9), 1094.CrossRefGoogle Scholar
  181. Rahaman, M., Mamidi, S., & Rahman, M. (2018). Genome-wide association study of heat stress-tolerance traits in spring-type Brassica napus L. under controlled conditions. The Crop Journal, 6(2), 115–125.CrossRefGoogle Scholar
  182. Rahman, S. U., Arif, M., Hussain, K., Hussain, S., Mukhtar, T., Razaq, A., et al. (2013). Evaluation of maize hybrids for tolerance to high temperature stress in central Punjab. Columbia International Publishing American Journal of Bioengineering and Biotechnology, 1(1), 30–36.Google Scholar
  183. Ramani, H. R., Mandavia, M. K., Dave, R. A., Bambharolia, R. P., Silungwe, H., & Garaniya, N. H. (2017). Biochemical and physiological constituents and their correlation in wheat (Triticum aestivum L.) genotypes under high temperature at different development stages. International Journal of Plant Physiology and Biochemistry, 9(1), 1–8.CrossRefGoogle Scholar
  184. Ray, J., & Ahmed, J. J. (2015). Canopy temperature effects on yield and grain growth of different wheat genotypes. IOSR Journal of Agriculture and Veterinary Science, 8(7), 2319–2380.Google Scholar
  185. Rekika, D., Kara, Y., Souyris, I., Nachit, M. M., Asbati, A., & Monneveux, P. (2000). The tolerance of PSII to high temperatures in durum wheat (T. turgidum conv. durum): Genetic variation and relationship with yield under heat stress. Cereal Research Communications, 28, 395–402.Google Scholar
  186. Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I., & Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Functional Plant Biology, 21(6), 717–730.CrossRefGoogle Scholar
  187. Reynolds, M. P., Singh, R. P., Ibrahim, A., Ageeb, O. A. A., Larque-Saavedra, A., & Quick, J. S. (1998). Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica, 100(1–3), 85–94.CrossRefGoogle Scholar
  188. Rodziewicz, P., Swarcewicz, B., Chmielewska, K., Wojakowska, A., & Stobiecki, M. (2014). Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiologiae Plantarum, 36(1), 1–19.CrossRefGoogle Scholar
  189. Roychoudhury, A., Datta, K., & Datta, S. K. (2011). Abiotic stress in plants: From genomics to metabolomics. Omics and Plant Abiotic Stress Tolerance (pp. 91–120). Chicago: Bentham Science Publishers.Google Scholar
  190. Sage, T. L., Bagha, S., Lundsgaard-Nielsen, V., Branch, H. A., Sultmanis, S., & Sage, R. F. (2015). The effect of high temperature stress on male and female reproduction in plants. Field Crops Research, 182, 30–42.CrossRefGoogle Scholar
  191. Sahu, P. P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., & Prasad, M. (2013). Epigenetic mechanisms of plant stress responses and adaptation. Plant cell reports, 32(8), 1151–1159.PubMedCrossRefGoogle Scholar
  192. Saint Pierre, C., Crossa, J., Manes, Y., & Reynolds, M. P. (2010). Gene action of canopy temperature in bread wheat under diverse environments. Theoretical and Applied Genetics, 120(6), 1107–1117.PubMedCrossRefGoogle Scholar
  193. Sairam, R. K., Srivastava, G. C., & Saxena, D. C. (2000). Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum, 43(2), 245–251.CrossRefGoogle Scholar
  194. Salem, M. A., Kakani, V. G., Koti, S., & Reddy, K. R. (2007). Pollen-based screening of soybean genotypes for high temperatures. Crop Science, 47(1), 219–231.CrossRefGoogle Scholar
  195. Sanmiya, K., Suzuki, K., Egawa, Y., & Shono, M. (2004). Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Letters, 557(1–3), 265–268.PubMedCrossRefGoogle Scholar
  196. Sarkar, N. K., Kim, Y.-K., & Grover, A. (2014). Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Molecular Biology, 84(1–2), 125–143.PubMedCrossRefGoogle Scholar
  197. Sato, H., Todaka, D., Kudo, M., Mizoi, J., Kidokoro, S., Zhao, Y., et al. (2016). The Arabidopsis transcriptional regulator DPB 3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 14(8), 1756–1767.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Savchenko, G. E., Klyuchareva, E. A., Abramchik, L. M., & Serdyuchenko, E. V. (2002). Effect of periodic heat shock on the inner membrane system of etioplasts. Russian Journal of Plant Physiology, 49(3), 349–359.CrossRefGoogle Scholar
  199. Saxena, D. C., Prasad, S. V. S., Chatrath, R., Mishra, S. C., Watt, M., Prashar, R., et al. (2014). Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian Journal of Plant Physiology, 19(1), 43–47.CrossRefGoogle Scholar
  200. Setimela, P. S., Andrews, D. J., Partridge, J., & Eskridge, K. M. (2005). Screening sorghum seedlings for heat tolerance using a laboratory method. European Journal of Agronomy, 23(2), 103–107.CrossRefGoogle Scholar
  201. Shamsudin, N. A. A., Swamy, B. P. M., Ratnam, W., Cruz, M. T. S., Raman, A., & Kumar, A. (2016). Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genetics, 17(1), 30.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Shanmugavadivel, P. S., Sv, A. M., Prakash, C., Ramkumar, M. K., Tiwari, R., Mohapatra, T., et al. (2017). High resolution mapping of QTLs for heat tolerance in rice using a 5 K SNP array. Rice, 10(1), 28.CrossRefGoogle Scholar
  203. Sharma, D. K., Andersen, S. B., Ottosen, C., & Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 153(2), 284–298.PubMedCrossRefGoogle Scholar
  204. Sharma, D. K., Fernández, J. O., Rosenqvist, E., Ottosen, C.-O., & Andersen, S. B. (2014). Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat. Journal of Plant Physiology, 171(8), 576–586.PubMedCrossRefGoogle Scholar
  205. Sharma, L., Priya, M., Bindumadhava, H., Nair, R. M., & Nayyar, H. (2016). Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Scientia Horticulturae, 213, 379–391.CrossRefGoogle Scholar
  206. Sharma, R. C., Tiwary, A. K., & Ortiz-Ferrara, G. (2008). Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under terminal heat stress. Plant Breeding, 127(3), 241–248.CrossRefGoogle Scholar
  207. Shi, P., Tang, L., Lin, C., Liu, L., Wang, H., Cao, W., et al. (2015). Modeling the effects of post-anthesis heat stress on rice phenology. Field Crops Research, 177, 26–36.CrossRefGoogle Scholar
  208. Shi, J., Yan, B., Lou, X., Ma, H., & Ruan, S. (2017). Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC Plant Biology, 17(1), 26.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Shiraya, T., Mori, T., Maruyama, T., Sasaki, M., Takamatsu, T., Oikawa, K., et al. (2015). Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnology Journal, 13(9), 1251–1263.PubMedCrossRefGoogle Scholar
  210. Shuancang, Y., Yongjian, W., & Xiaoying, Z. (2003). Mapping and analysis QTL controlling heat tolerance in Brassica campestris L. ssp. Pekinensis. Acta Horticulturae Sinica, 30(4), 417–420.Google Scholar
  211. Shukla, N. (2013). Flower numbers, pod production, pollen viability are reduced with flower and pod abortion increased in Chickpea (Cicer arietinum L.) under heat stress. Research Journal of Recent Sciences, 2, 116–119.Google Scholar
  212. Sikder, S., & Paul, N. K. (2010). Effects of post-anthesis heat stress on stem reserves mobilization, canopy temperature depression and floret sterility of wheat cultivars. Bangladesh Journal of Botany, 39(1), 51–55.CrossRefGoogle Scholar
  213. Singh, A., & Grover, A. (2008). Genetic engineering for heat tolerance in plants. Physiology and Molecular Biology of Plants, 14(1–2), 155.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Singh, D., Singh, C. K., Singh Tomar, R. S., & Pal, M. (2017). Genetics and molecular mapping of heat tolerance for seedling survival and pod set in lentil. Crop Science, 57(6), 3059–3067.CrossRefGoogle Scholar
  215. Singh, K., Wijewardana, C., Gajanayake, B., Lokhande, S., Wallace, T., Jones, D., et al. (2018). Genotypic variability among cotton cultivars for heat and drought tolerance using reproductive and physiological traits. Euphytica, 214(3), 57.CrossRefGoogle Scholar
  216. Sita, K., Sehgal, A., Hanumantha Rao, B., Nair, R. M., Vara Prasad, P. V., Kumar, S., et al. (2017a). Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science, 8, 1658.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Sita, K., Sehgal, A., Kumar, J., Kumar, S., Singh, S., Siddique, K. H. M., et al. (2017b). Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Frontiers. Plant Science, 8, 744.Google Scholar
  218. Sohn, S. O., & Back, K. (2007). Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biologia Plantarum, 51(2), 340–342.CrossRefGoogle Scholar
  219. Solís, M.-T., Rodríguez-Serrano, M., Meijón, M., Cañal, M.-J., Cifuentes, A., Risueño, M. C., et al. (2012). DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. Journal of Experimental Botany, 63(18), 6431–6444.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Stefanov, D., Petkova, V., & Denev, I. D. (2011). Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. Scientia Horticulturae, 128(1), 1–6.CrossRefGoogle Scholar
  221. Stratonovitch, P., & Semenov, M. A. (2015). Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Journal of Experimental Botany, 66(12), 3599–3609.PubMedPubMedCentralCrossRefGoogle Scholar
  222. Sun, W., Van Montagu, M., & Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1577(1), 1–9.CrossRefGoogle Scholar
  223. Suwa, R., Hakata, H., Hara, H., El-Shemy, H. A., Adu-Gyamfi, J. J., Nguyen, N. T., et al. (2010). High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 48(2–3), 124–130.PubMedCrossRefGoogle Scholar
  224. Suzuki, K., Takeda, H., Tsukaguchi, T., & Egawa, Y. (2001). Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sexual Plant Reproduction, 13(6), 293–299.CrossRefGoogle Scholar
  225. Talukder, S. K., Babar, M. A., Vijayalakshmi, K., Poland, J., Prasad, P. V. V., Bowden, R., et al. (2014a). Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genetics, 15(1), 97.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Talukder, A., McDonald, G. K., & Gill, G. S. (2014b). Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Research, 160, 54–63.CrossRefGoogle Scholar
  227. Tan, W., Wei Meng, Q., Brestic, M., Olsovska, K., & Yang, X. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168(17), 2063–2071.PubMedCrossRefGoogle Scholar
  228. Team, C. W., Pachauri, R. K., & Meyer, L. A. (2014). IPCC, 2014: climate change 2014: synthesis report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151.Google Scholar
  229. Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215.CrossRefGoogle Scholar
  230. Tenorio, F. A., Ye, C., Redoña, E., Sierra, S., Laza, M., & Argayoso, M. A. (2013). Screening rice genetic resources for heat tolerance. SABRAO Journal of Breeding and Genetics, 45(3), 371–381.Google Scholar
  231. Thomas, H., & Ougham, H. (2014). The stay-green trait. Journal of Experimental Botany, 65(14), 3889–3900.PubMedCrossRefGoogle Scholar
  232. Tian, Y., Chen, J., Chen, C., Deng, A., Song, Z., Zheng, C., et al. (2012). Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China. Field Crops Research, 134, 193–199.CrossRefGoogle Scholar
  233.  Timmerman-Vaughan, G. M., Mills, A., Whitfield, C., Frew, T., Butler, R., Murray, S., Lakeman, M., McCallum, J.,  Russell, A., & Wilson, D. (2005) Linkage Mapping of QTL for Seed Yield, Yield Components, and Developmental Traits in Pea. Crop Science, 45(4):1336.CrossRefGoogle Scholar
  234. Trapero-Mozos, A., Morris, W. L., Ducreux, L. J. M., McLean, K., Stephens, J., Torrance, L., et al. (2018). Engineering heat tolerance in potato by temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70. Plant Biotechnology Journal, 16(1), 197–207.PubMedCrossRefGoogle Scholar
  235. Usman, M. G., Rafii, M. Y., Ismail, M. R., Malek, M. A., Latif, M. A., & Oladosu, Y. (2014). Heat shock proteins: functions and response against heat stress in plants. International Journal of Scientific and Technology Research, 3(11), 204–218.Google Scholar
  236. Vignjevic, M., Wang, X., Olesen, J. E., & Wollenweber, B. (2015). Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. Journal of Agronomy and Crop Science, 201(1), 32–48.CrossRefGoogle Scholar
  237. Vijayalakshmi, K., Fritz, A. K., Paulsen, G. M., Bai, G., Pandravada, S., & Gill, B. S. (2010). Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 26(2), 163–175.CrossRefGoogle Scholar
  238. Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 46(2), 133–141.CrossRefGoogle Scholar
  239. Wang, X., Huang, W., Liu, J., Yang, Z., & Huang, B. (2017a). Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnology Journal, 15(2), 237–248.PubMedCrossRefGoogle Scholar
  240. Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.PubMedCrossRefGoogle Scholar
  241. Wang, X., Yan, B., Shi, M., Zhou, W., Zekria, D., Wang, H., et al. (2016). Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress. Protoplasma, 253(3), 637–645.PubMedCrossRefGoogle Scholar
  242. Wang, A., Yu, X., Mao, Y., Liu, Y., Liu, G., Liu, Y., et al. (2015). Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breeding, 134(4), 384–393.CrossRefGoogle Scholar
  243. Wang, M., Zou, Z., Li, Q., Xin, H., Zhu, X., Chen, X., et al. (2017b). Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Reports, 36(7), 1125–1135.PubMedCrossRefGoogle Scholar
  244. Wei, H., Liu, J., Wang, Y., Huang, N., Zhang, X., Wang, L., et al. (2012). A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 C high temperature at seedling stage. Journal of Heredity, 104(2), 287–294.PubMedCrossRefGoogle Scholar
  245. Weng, M., Yang, Y. U. E., Feng, H., Pan, Z., Shen, W., Zhu, Y. A. N., et al. (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant, Cell and Environment, 37(9), 2128–2138.PubMedCrossRefGoogle Scholar
  246. Wu, H., Luo, D., Vignols, F., & Jinn, T. (2012). Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant, Cell and Environment, 35(9), 1543–1557.PubMedCrossRefGoogle Scholar
  247. Wu, T., Weaver, D. B., Locy, R. D., McElroy, S., & van Santen, E. (2014). Identification of vegetative heat-tolerant upland cotton (Gossypium hirsutum L.) germplasm utilizing chlorophyll fluorescence measurement during heat stress. Plant Breeding, 133(2), 250–255.CrossRefGoogle Scholar
  248. Xin, H., Zhang, H., Zhong, X., Lian, Q., Dong, A., Cao, L., et al. (2017). Over-expression of LlHsfA2b, a lily heat shock transcription factor lacking trans-activation activity in yeast, can enhance tolerance to heat and oxidative stress in transgenic Arabidopsis seedlings. Plant Cell, Tissue and Organ Culture (PCTOC), 130(3), 617–629.CrossRefGoogle Scholar
  249. Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5), 58.PubMedPubMedCentralCrossRefGoogle Scholar
  250. Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., Mullet, J. E., & Nguyen, H. T. (2000). Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 43(3), 461–469.PubMedCrossRefGoogle Scholar
  251. Xu, Y., Wang, J., Bonos, S. A., Meyer, W. A., & Huang, B. (2018). Candidate genes and molecular markers correlated to physiological traits for heat tolerance in fine fescue cultivars. International Journal of Molecular Sciences, 19(1), 116.PubMedCentralCrossRefGoogle Scholar
  252. Xu, Q., Xu, X., Shi, Y., Xu, J., & Huang, B. (2014). Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE, 9(7), e100792.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Xue, G.-P., Sadat, S., Drenth, J., & McIntyre, C. L. (2013). The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. Journal of Experimental Botany, 65(2), 539–557.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Yan, K., Chen, N., Qu, Y., Dong, X., Meng, Q., & Zhao, S. (2008). Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. Journal of Integrative Plant Biology, 50(5), 613–621.PubMedCrossRefGoogle Scholar
  255. Yang, X., Liang, Z., & Lu, C. (2005). Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiology, 138(4), 2299–2309.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Yang, J., Sears, R. G., Gill, B. S., & Paulsen, G. M. (2002a). Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses. Euphytica, 125(2), 179–188.CrossRefGoogle Scholar
  257. Yang, J., Sears, R. G., Gill, B. S., & Paulsen, G. M. (2002b). Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 126(2), 275–282.CrossRefGoogle Scholar
  258. Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., et al. (2007). Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta, 225(3), 719–733.PubMedCrossRefGoogle Scholar
  259. Ye, C., Tenorio, F. A., Argayoso, M. A., Laza, M. A., Koh, H.-J., Redoña, E. D., et al. (2015). Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics, 16(1), 41.PubMedPubMedCentralCrossRefGoogle Scholar
  260. Yu, E., Fan, C., Yang, Q., Li, X., Wan, B., Dong, Y., et al. (2014). Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS ONE, 9(7), e101914.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Yuan, L., Yuan, Y., Liu, S., Wang, J., Zhu, S., Chen, G., et al. (2017). Influence of high temperature on photosynthesis, antioxidative capacity of chloroplast, and carbon assimilation among heat-tolerant and heat-susceptible genotypes of nonheading Chinese cabbage. HortScience, 52(11), 1464–1470.CrossRefGoogle Scholar
  262. Zang, X., Geng, X., Wang, F., Liu, Z., Zhang, L., Zhao, Y., et al. (2017). Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biology, 17(1), 14.PubMedPubMedCentralCrossRefGoogle Scholar
  263. Zarei, B., Naderi, A., Jalal Kamali, M. R., Lack, S., & Modhej, A. (2013). Determination of physiological traits related to terminal drought and heat stress tolerance in spring wheat genotypes. International Journal of Agriculture and Crop Sciences, 5(21), 2511–2520.Google Scholar
  264. Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., et al. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant Journal, 44(3), 361–371.PubMedCrossRefGoogle Scholar
  265. Zhang, J., Chen, H., Wang, H., Li, B., Yi, Y., Kong, F., et al. (2016). Constitutive expression of a tomato small heat shock protein gene LeHSP21 improves tolerance to high-temperature stress by enhancing antioxidation capacity in tobacco. Plant Molecular Biology Reporter, 34(2), 399–409.CrossRefGoogle Scholar
  266. Zhang, K., Ezemaduka, A. N., Wang, Z., Hu, H., Shi, X., Liu, C., et al. (2015). A novel mechanism for small heat shock proteins to function as molecular chaperones. Scientific Reports, 5, 8811.PubMedPubMedCentralCrossRefGoogle Scholar
  267. Zhang, L., Geng, X., Zhang, H., Zhou, C., Zhao, A., Wang, F., et al. (2017a). Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). Journal of Plant Biology, 60(1), 57–65.CrossRefGoogle Scholar
  268. Zhang, H., Liang, W., Yang, X., Luo, X., Jiang, N., Ma, H., et al. (2010). Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell, 22(3), 672–689.PubMedPubMedCentralCrossRefGoogle Scholar
  269. Zhang, Y.-J., Zhou, L.-Y., Bai, Y.-X., Yi, W.-B., Cu, K., Nie, X., et al. (2017b). Development of plant expression vector with Taq DNA polymerase gene to yield heat-tolerant maize lines. International Journal of Agriculture and Biology, 19(3), 523.CrossRefGoogle Scholar
  270. Zheng, H. J., Wu, A. Z., Zheng, C. C., Wang, Y. F., Cai, R., Shen, X. F., et al. (2009). QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breeding, 128(1), 54–62.CrossRefGoogle Scholar
  271. Zhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C.-O., & Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1–11.CrossRefGoogle Scholar
  272. Zhu, X., Thalor, S. K., Takahashi, Y., Berberich, T., & Kusano, T. (2012). An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. Plant, Cell and Environment, 35(11), 2014–2030.PubMedCrossRefGoogle Scholar
  273. Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959–1968.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Manu Priya
    • 1
  • K. H. M. Siddique
    • 2
  • O. P. Dhankhar
    • 3
  • P. V. Vara Prasad
    • 4
  • Bindumadhava Hanumantha Rao
    • 5
  • Ramakrishnan M. Nair
    • 5
  • Harsh Nayyar
    • 1
    Email author
  1. 1.Department of BotanyPanjab UniversityChandigarhIndia
  2. 2.UWA Institute of AgricultureUniversity of Western AustraliaPerthAustralia
  3. 3.University of Massachusetts AmherstAmherstUSA
  4. 4.Sustainable Intensification Innovation LabKansas State UniversityManhattanUSA
  5. 5.World Vegetable Center, South AsiaHyderabadIndia

Personalised recommendations