Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 721–730 | Cite as

Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants

  • Kundan KumarEmail author
  • Kareem A. Mosa
  • Ahmed G. Meselhy
  • Om Parkash Dhankher
Review Article


Aquaporins are channel proteins reported to play multiple functions in plants ranging from water, solutes, metalloids (arsenic, boron, silicon) transport, and tolerance to abiotic stresses including drought, salinity and cold. Based on their localization and sequence similarities, aquaporins have been classified into seven major subfamilies: plasma membrane intrinsic proteins (PIPs), nodulin 26-like intrinsic proteins, tonoplast intrinsic proteins, small basic intrinsic proteins, GlpF-like intrinsic protein, hybrid intrinsic proteins and the uncategorized (X) intrinsic proteins. PIP subfamily is one of the biggest subfamilies of aquaporin superfamily and they are localized to plasma membrane. Members of PIPs are involved in water and small neutral solute transport and play an important role in maintaining water homeostasis under environmental stress and are known to provide tolerance to various abiotic stresses. Recently, members of PIP subfamily have been shown to be involved in the bidirectional transport of metalloids, arsenic and boron in plants. This review highlights the involvement of various PIP homologs in plant stress responses against a variety of environmental stresses and metalloid transport and tolerance. Molecular insights and biotechnological approaches for developing climate resilient crops by modulating PIPs will be discussed.


Aquaporins Abiotic stresses Tolerance Metalloids Transport Rice 



OPD acknowledge the funding support from the USDA NIFA (#2017-67013-26165) and funding support from the grant #S16000000000036 from the Ministry of Higher Education and Scientific Research in Egypt through the Egyptian Cultural and Educational Bureau, Washington, DC to OPD and AGM (GM # 1054). KK acknowledge the financial assistance from Board of Research in Nuclear Sciences (37(1)/14/28/2016-BRNS), India.

Supplementary material

40502_2018_425_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)


  1. Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulink, Y., & Galili, G. (2003). Overexpression of plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought and salt stress. The Plant Cell, 15(2), 439–447.PubMedPubMedCentralGoogle Scholar
  2. Alexandersson, E., Fraysse, L., Sjovall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59(3), 469–484.PubMedGoogle Scholar
  3. Anderberg, H. I., Kjellbom, P., & Johanson, U. (2012). Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Frontiers in Plant Science, 3, 33.PubMedPubMedCentralGoogle Scholar
  4. Ayadi, M., Cavez, D., Miled, N., Chaumont, F., & Masmoudi, K. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiology and Biochemistry, 49(9), 1029–1039.PubMedGoogle Scholar
  5. Bienert, M. D., Diehn, T. A., Richet, N., Chaumont, F., & Bienert, G. P. (2018). Heterotetramerization of plant PIP1 and PIP2 aquaporins is an evolutionary ancient feature to guide PIP1 plasma membrane localization and function. Frontiers in Plant Science, 9, 382.PubMedPubMedCentralGoogle Scholar
  6. Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., et al. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6(1), 26.PubMedPubMedCentralGoogle Scholar
  7. Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology, 139(2), 790–805.PubMedPubMedCentralGoogle Scholar
  8. Byrt, C. S., Zhao, M., Kourghi, M., Bose, J., Henderson, S. W., Qiu, J., et al. (2017). Non-selective cation channel activity of aquaporin AtPIP2; 1 regulated by Ca2 + and pH. Plant, Cell and Environment, 40(6), 802–815.PubMedGoogle Scholar
  9. Chaumont, F., Barrieu, F., Jung, R., & Chrispeels, M. J. (2000). Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiology, 122(4), 1025–1034.PubMedPubMedCentralGoogle Scholar
  10. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125(3), 1206–1215.PubMedPubMedCentralGoogle Scholar
  11. Chaumont, F., & Tyerman, S. F. (2014). Aquaporins: Highly regulated channels controlling plant water relations. Plant Physiology, 164(4), 1600–1618.PubMedPubMedCentralGoogle Scholar
  12. Chen, Q., Yang, S., Kong, X., Wang, C., Xiang, N., Yang, Y., et al. (2018). Molecular cloning of plasma membrane aquaporin in Stipa purpurea, and exploration of its role in drought stress tolerance. Gene, 665, 41–48.PubMedGoogle Scholar
  13. Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A., Bohlman, M. C., et al. (2007). Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7(2), 111–134.Google Scholar
  14. Danielson, J. Å., & Johanson, U. (2008). Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biology, 8(1), 45.PubMedPubMedCentralGoogle Scholar
  15. Deshmukh, R. K., Sonah, H., & Bélanger, R. R. (2016). Plant Aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Frontiers in Plant Science, 7, 1896.PubMedPubMedCentralGoogle Scholar
  16. Deshmukh, R. K., Vivancos, J., Ramakrishnan, G., Guérin, V., Carpentier, G., Sonah, H., et al. (2015). A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. The Plant Journal, 83(3), 489–500.PubMedGoogle Scholar
  17. Fetter, K., Van Wilder, V., Moshelion, M., & Chaumont, F. (2004). Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell, 16(1), 215–228.PubMedPubMedCentralGoogle Scholar
  18. Fitzpatrick, K. L., & Reid, R. J. (2009). The involvement of aquaglyceroporins in transport of boron in barley roots. Plant, Cell and Environment, 32(10), 1357–1365.PubMedGoogle Scholar
  19. Forrest, K. L., & Bhave, M. (2007). Major intrinsic proteins (MIPs) in plants: A complex gene family with major impacts on plant phenotype. Functional & Integrative Genomics, 7(4), 263.Google Scholar
  20. Friso, G., & van Wijk, K. J. (2015). Posttranslational protein modifications in plant metabolism. Plant Physiology, 169(3), 1469–1487.PubMedPubMedCentralGoogle Scholar
  21. Gupta, A. B., & Sankararamakrishnan, R. (2009). Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biology, 9(1), 134.PubMedPubMedCentralGoogle Scholar
  22. Hove, R. M., & Bhave, M. (2011). Plant aquaporins with non-aqua functions: Deciphering the signature sequences. Plant Molecular Biology, 75(4–5), 413–430.PubMedGoogle Scholar
  23. Hu, W., Yuan, Q., Wang, Y., Cai, R., Deng, X., Wang, J., et al. (2012). Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant and Cell Physiology, 53(12), 2127–2141.PubMedGoogle Scholar
  24. Isayenkov, S. V., & Maathuis, F. J. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS Letters, 582(11), 1625–1628.PubMedGoogle Scholar
  25. Jang, J. Y., Kim, D. G., Kim, Y. O., Kim, J. S., & Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology, 54(5), 713–725.PubMedGoogle Scholar
  26. Jang, J. Y., Lee, S. H., Rhee, J. Y., Chung, G. C., Ahn, S. J., & Kang, H. (2007). Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Molecular Biology, 64(6), 621–632.PubMedGoogle Scholar
  27. Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J., Vinh, J., et al. (2003). Role of a single aquaporin isoform in root water uptake. The Plant Cell, 15(2), 509–522.PubMedPubMedCentralGoogle Scholar
  28. Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., et al. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 126(4), 1358–1369.PubMedPubMedCentralGoogle Scholar
  29. Johansson, I., Karlsson, M., Johanson, U., Larsson, C., & Kjellbom, P. (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta, 1465(1–2), 324–342.PubMedGoogle Scholar
  30. Jozefkowicz, C., Berny, M. C., Chaumont, F., & Alleva, K. (2017). Heteromerization of plant aquaporins. In Plant Aquaporins (pp. 29–46). Cham: Springer.Google Scholar
  31. Kaldenhoff, R., Grote, K., Zhu, J. J., & Zimmermann, U. (1998). Significance of plasmalemma aquaporins for water- transport in Arabidopsis thaliana. The Plant Journal, 14(1), 121–128.PubMedGoogle Scholar
  32. Kamiya, T., & Fujiwara, T. (2009). Arabidopsis NIP1; 1 transports antimonite and determines antimonite sensitivity. Plant and Cell Physiology, 50(11), 1977–1981.PubMedGoogle Scholar
  33. Katsuhara, M., Koshio, K., Shibasaka, M., Hayashi, Y., Hayakawa, T., & Kasamo, K. (2003). Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant and Cell Physiology, 44(12), 1378–1383.PubMedGoogle Scholar
  34. Katsuhara, M., Sasano, S., Horie, T., Matsumoto, T., Rhee, J., & Shibasaka, M. (2014). Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnology, 31(3), 213–219.Google Scholar
  35. Katsuhara, M., & Shibasaka, M. (2007). Barley root hydraulic conductivity and aquaporins expression in relation to salt tolerance. Soil Science and Plant Nutrition, 53(4), 466–470.Google Scholar
  36. Kayum, M. A., Park, J. I., Nath, U. K., Biswas, M. K., Kim, H. T., & Nou, I. S. (2017). Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biology, 17(1), 23.PubMedPubMedCentralGoogle Scholar
  37. Kelly, G., Sade, N., Attia, Z., Secchi, F., Zwieniecki, M., Holbrook, N. M., et al. (2014). Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS ONE, 9(2), e87888.PubMedPubMedCentralGoogle Scholar
  38. Kong, W., Yang, S., Wang, Y., Bendahmane, M., & Fu, X. (2017). Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ, 5, e3747.PubMedPubMedCentralGoogle Scholar
  39. Kumar, R. S., Ji, G., Guo, H., Zhao, L., & Zheng, B. (2018). Over-expression of a grafting-responsive gene from hickory increases abiotic stress tolerance in Arabidopsis. The Plant Cell Reports, 37(3), 541–552.PubMedGoogle Scholar
  40. Kumar, K., Mosa, K. A., Chhikara, S., Musante, C., White, J. C., & Dhankher, O. P. (2014). Two rice plasma membrane intrinsic proteins, OsPIP2; 4 and OsPIP2; 7, are involved in transport and providing tolerance to boron toxicity. Planta, 239(1), 187–198.PubMedGoogle Scholar
  41. Li, R., Wang, J., Li, S., Zhang, L., Qi, C., Weeda, S., et al. (2016). Plasma membrane intrinsic proteins SlPIP2; 1, SlPIP2; 7 and SlPIP2; 5 conferring enhanced drought stress tolerance in tomato. Scientific Reports, 6, 31814.PubMedPubMedCentralGoogle Scholar
  42. Lindsay, E. R., & Maathuis, F. J. (2016). Arabidopsis thaliana NIP 7; 1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Letters, 590(6), 779–786.PubMedGoogle Scholar
  43. Liu, Z., Shen, J., Carbrey, J. M., Mukhopadhyay, R., Agre, P., & Rosen, B. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences, 99(9), 6053–6058.Google Scholar
  44. Lombi, E., & Holm, P. E. (2010). Metalloids, soil chemistry and the environment. In MIPs and Their Role in the Exchange of Metalloids (pp. 33–44). New York: Springer.Google Scholar
  45. Lu, L., Dong, C., Liu, R., Zhou, B., Wang, C., & Shou, H. (2018). Roles of soybean plasma membrane intrinsic protein GmPIP2; 9 in drought tolerance and seed development. Frontiers in Plant Science, 9, 530.PubMedPubMedCentralGoogle Scholar
  46. Ma, J. F., & Yamaji, N. (2015). A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435–442.PubMedGoogle Scholar
  47. Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, 105(29), 9931–9935.Google Scholar
  48. Martins, C. D. P. S., Pedrosa, A. M., Du, D., Gonçalves, L. P., Yu, Q., Gmitter, F. G., Jr., et al. (2015). Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS one, 10(9), e0138786.Google Scholar
  49. Matsumoto, T., Lian, H. L., Su, W. A., Tanaka, D., Liu, C. W., Iwasaki, I., et al. (2008). Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant and Cell Physiology, 50(2), 216–229.PubMedGoogle Scholar
  50. Maurel, C., Boursiac, Y., Luu, D. T., Santoni, V., Shahzad, Z., & Verdoucq, L. (2015). Aquaporins in plants. Physiological Reviews, 95(4), 1321–1358.PubMedGoogle Scholar
  51. Meharg, A. A., & Jardine, L. (2003). Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist, 157(1), 39–44.Google Scholar
  52. Mosa, K. A., Kumar, K., Chhikara, S., McDermott, J., Liu, Z., Musante, C., et al. (2012). Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Research, 21, 1265–1277.PubMedGoogle Scholar
  53. Mosa, K. A., Kumar, K., Chhikara, S., Musante, C., White, J. C., & Dhankher, O. P. (2016a). Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Scientific Reports, 6, 21640.PubMedPubMedCentralGoogle Scholar
  54. Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M., & Dhankher, O. P. (2016b). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Frontiers in Plant Science, 7, 303.PubMedPubMedCentralGoogle Scholar
  55. Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., et al. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407(6804), 599.PubMedGoogle Scholar
  56. Nakata, Y., Ueno, M., Kihara, J., Ichii, M., Taketa, S., & Arase, S. (2008). Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsi1 of rice. Crop Protection, 27(3–5), 865–868.Google Scholar
  57. Nouri, M. Z., & Komatsu, S. (2013). Subcellular protein overexpression to develop abiotic stress tolerant plants. Frontiers in Plant Science, 4, 2.PubMedPubMedCentralGoogle Scholar
  58. Pawłowicz, I., Rapacz, M., Perlikowski, D., Gondek, K., & Kosmala, A. (2017). Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. Journal of Applied Genetics, 58(4), 421–435.PubMedPubMedCentralGoogle Scholar
  59. Pommerrenig, B., Diehn, T. A., & Bienert, G. P. (2015). Metalloido-porins: Essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Science, 238(2015), 212–227.PubMedGoogle Scholar
  60. Pou, A., Jeanguenin, L., Milhiet, T., Batoko, H., Chaumont, F., & Hachez, C. (2016). Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Molecular Biology, 92(6), 731–744.PubMedGoogle Scholar
  61. Prak, S., Hem, S., Boudet, J., Viennois, G., Sommerer, N., Rossignol, M., et al. (2008). Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins role in subcellular trafficking of AtPIP2; 1 in response to salt stress. Molecular and Cellular Proteomics, 7(6), 1019–1030.PubMedGoogle Scholar
  62. Qian, Z. J., Song, J. J., Chaumont, F., & Ye, Q. (2015). Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant, Cell and Environment, 38(3), 461–473.PubMedGoogle Scholar
  63. Reddy, P. S., Rao, T. S. R. B., Sharma, K. K., & Vadez, V. (2015). Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene, 1, 18–28.Google Scholar
  64. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683–1696.PubMedPubMedCentralGoogle Scholar
  65. Saddhe, A. A., Shweta, S., Mosa, K. A., Kumar, K., Prasad, M., & Dhankher, O. P. (2018). Genome-wide characterization of major intrinsic protein (MIP) gene family in Brachypodium distachyon. Current Bioinformatics, 13(5), 536–552.Google Scholar
  66. Secchi, F., Pagliarani, C., & Zwieniecki, M. A. (2017). The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell and Environment, 40(6), 858–871.PubMedGoogle Scholar
  67. Secchi, F., & Zwieniecki, M. A. (2010). Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant, Cell and Environment, 33(8), 1285–1297.PubMedGoogle Scholar
  68. Sreedharan, S., Shekhawat, U. K., & Ganapathi, T. R. (2013). Transgenic banana plants overexpressing a native plasma membrane aquaporin M usa PIP 1; 2 display high tolerance levels to different abiotic stresses. Plant Biotechnology Journal, 11(8), 942–952.PubMedGoogle Scholar
  69. Sreedharan, S., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2; 6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 88(1–2), 41–52.PubMedGoogle Scholar
  70. Srivastava, A. K., Penna, S., Nguyen, D. V., & Tran, L. S. P. (2016). Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Critical Reviews in Biotechnology, 36(3), 389–398.PubMedGoogle Scholar
  71. Suga, S., Komatsu, S., & Maeshima, M. (2002). Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant and Cell Physiology, 43(10), 1229–1237.PubMedGoogle Scholar
  72. Tao, P., Zhong, X., Li, B., Wang, W., Yue, Z., Lei, J., et al. (2014). Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular Genetics and Genomics, 289(6), 1131–1145.PubMedGoogle Scholar
  73. Ueda, M., Tsutsumi, N., & Fujimoto, M. (2016). Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 474(4), 742–746.PubMedGoogle Scholar
  74. Wang, L., Liu, Y., Feng, S., Yang, J., Li, D., & Zhang, J. (2017). Roles of plasmalemma aquaporin gene StPIP1 in enhancing drought tolerance in potato. Frontiers in Plant Science, 8, 616.PubMedPubMedCentralGoogle Scholar
  75. Wei, W., Alexandersson, E., Golldack, D., Miller, A. J., Kjellbom, P. O., & Fricke, W. (2007). HvPIP1; 6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues. Plant and Cell Physiology, 48(8), 1132–1147.PubMedGoogle Scholar
  76. Whiteman, S. A., Nühse, T. S., Ashford, D. A., Sanders, D., & Maathuis, F. J. (2008). A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. The Plant Journal, 56(1), 146–156.PubMedGoogle Scholar
  77. Xu, Y., Hu, W., Liu, J., Zhang, J., Jia, C., Miao, H., et al. (2014). A banana aquaporin gene, MaPIP1; 1, is involved in tolerance to drought and salt stresses. BMC Plant Biology, 14(1), 59.PubMedPubMedCentralGoogle Scholar
  78. Yaneff, A., Sigaut, L., Marquez, M., Alleva, K., Pietrasanta, L. I., & Amodeo, G. (2014). Heteromerization of PIP aquaporins affects their intrinsic permeability. Proceedings of the National Academy of Sciences, 111(1), 231–236.Google Scholar
  79. Zangi, R., & Filella, M. (2012). Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chemico-Biology Interaction, 197(1), 47–57.Google Scholar
  80. Zardoya, R. (2005). Phylogeny and evolution of the major intrinsic protein family. Biology of the Cell, 97(6), 397–414.PubMedGoogle Scholar
  81. Zhang, D. Y., Ali, Z., Wang, C. B., Xu, L., Yi, J. X., Xu, Z. L., et al. (2013). Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE, 8(2), e56312.PubMedPubMedCentralGoogle Scholar
  82. Zhao, Y. Y., Yan, F., Hu, L. P., Zhou, X. T., Zou, Z. R., & Cui, L. R. (2015). Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress. Genetics and Molecular Research, 14(2), 6401–6412.PubMedGoogle Scholar
  83. Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., et al. (2012). Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE, 7(12), e52439.PubMedPubMedCentralGoogle Scholar
  84. Zhou, C., Wang, T., Guo, Z., & Lu, S. (2016). Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3− deficiency in transgenic tobacco plants. BMC Plant Biology, 16(1), 138.Google Scholar
  85. Zhou, L., Wang, C., Liu, R., Han, Q., Vandeleur, R. K., Du, J., et al. (2014). Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1; 6 confers salt tolerance. BMC Plant Biology, 14(1), 181.PubMedPubMedCentralGoogle Scholar
  86. Zhou, L., Zhou, J., Xiong, Y., Liu, C., Wang, J., Wang, G., et al. (2018). Overexpression of a maize plasma membrane intrinsic protein ZmPIP1; 1 confers drought and salt tolerance in Arabidopsis. PLoS ONE, 13(6), e0198639.PubMedPubMedCentralGoogle Scholar
  87. Zhu, C., Schraut, D., Hartung, W., & Schaffner, A. R. (2005). Differential responses of maize MIP genes to salt stress and ABA. Journal of Experimental Botany, 56(421), 2971–2981.PubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Kundan Kumar
    • 1
    Email author
  • Kareem A. Mosa
    • 2
    • 4
  • Ahmed G. Meselhy
    • 3
    • 4
  • Om Parkash Dhankher
    • 3
  1. 1.Department of Biological SciencesBirla Institute of Technology and Science PilaniGoaIndia
  2. 2.Department of Applied Biology, College of SciencesUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Stockbridge School of AgricultureUniversity of Massachusetts AmherstAmherstUSA
  4. 4.Department of Biotechnology, Faculty of AgricultureAl-Azhar UniversityCairoEgypt

Personalised recommendations