Advertisement

Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 653–669 | Cite as

Targeted genome editing in algae using CRISPR/Cas9

  • Amita Tanwar
  • Surbhi Sharma
  • Shashi KumarEmail author
Review Article

Abstract

The emergence of nuclease guided genome editing tools like FokI-I, TALENS, meganucleases, and CRISPR associated Cas9 could be a revolutionary step for the improvement of different organisms. These tools have helped in performing site-specific editing in an efficient and reliable manner to obtain the desired results. Of all the nucleases, CRISPR/Cas9 is emerging a most favourite arsenal owing to its easy adaptability, versatility, and cost-effectiveness. It has been successfully employed in all the model systems ranging from multicellular organisms to single-celled ones including algae, which are a diverse group of photosynthetic organisms and promising sources for the sustainable biofuel. The CRISPR/Cas9 technology has been used efficiently to generate stable targeted gene mutations in some algal species and has great potential to be explored further for the commercially important algal species to produce sustainable algae biofuel, pharmaceuticals and value-added products.

Keywords

CRISPR Microalgae Genome editing Biofuel 

Notes

Acknowledgements

This work was supported by the funding from Department of Biotechnology (DBT), Government of India and Centre for High Technology (CHT), India to SK.

References

  1. Ahmad, I., Sharma, A. K., Daniell, H., & Kumar, S. (2015). Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnology Journal, 13(4), 540–550.  https://doi.org/10.1111/pbi.12278.CrossRefPubMedGoogle Scholar
  2. Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., et al. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647–652.  https://doi.org/10.1038/nbt.3865.CrossRefPubMedGoogle Scholar
  3. Anton, T., Bultmann, S., Leonhardt, H., & Markaki, Y. (2014). Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus, 5(2), 163–172.  https://doi.org/10.4161/nucl.28488.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bae, S., Park, J., & Kim, J.-S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10), 1473–1475.  https://doi.org/10.1093/bioinformatics/btu048.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J.-S., et al. (2016). DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR–Cas9 ribonucleoproteins. Scientific Reports, 6, 30620.  https://doi.org/10.1038/srep30620.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banerjee, A., Banerjee, C., Negi, S., Chang, J.-S., & Shukla, P. (2018). Improvements in algal lipid production: A systems biology and gene editing approach. Critical Reviews in Biotechnology, 38(3), 369–385.  https://doi.org/10.1080/07388551.2017.1356803.CrossRefPubMedGoogle Scholar
  7. Barrangou, R., & Horvath, P. (2012). CRISPR: New horizons in phage resistance and strain identification. Annual Review of Food Science and Technology, 3, 143–162.  https://doi.org/10.1146/annurev-food-022811-101134.CrossRefPubMedGoogle Scholar
  8. Beacham, T. A., Macia, V. M., Rooks, P., White, D. A., & Ali, S. T. (2015). Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnology Reports, 7, 87–94.  https://doi.org/10.1016/j.btre.2015.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blatti, J. L., Michaud, J., & Burkart, M. D. (2013). Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Current Opinion in Chemical Biology, 17(3), 496–505.  https://doi.org/10.1016/j.cbpa.2013.04.007.CrossRefPubMedGoogle Scholar
  10. Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551–2561.  https://doi.org/10.1099/mic.0.28048-0.CrossRefPubMedGoogle Scholar
  11. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006.CrossRefPubMedGoogle Scholar
  12. Boudry, P., Semenova, E., Monot, M., Datsenko, K. A., Lopatina, A., Sekulovic, O., et al. (2015). Function of the CRISPR–Cas system of the human pathogen Clostridium difficile. MBio, 6(5), e01112–e01115.  https://doi.org/10.1128/mBio.01112-15.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321(5891), 960–964.  https://doi.org/10.1126/science.1159689.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cerutti, H., Ma, X., Msanne, J., & Repas, T. (2011). RNA-mediated silencing in algae: Biological roles and tools for analysis of gene function. Eukaryotic Cell, 10(9), 1164–1172.  https://doi.org/10.1128/EC.05106-11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757–761.  https://doi.org/10.1534/genetics.110.120717.CrossRefPubMedPubMedCentralGoogle Scholar
  16. CRISPR RGEN Tools. (n.d.). Retrieved November 18, 2018, from http://www.rgenome.net/be-designer/.
  17. Daboussi, F., Leduc, S., Maréchal, A., Dubois, G., Guyot, V., Perez-Michaut, C., et al. (2014). Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nature Communications.  https://doi.org/10.1038/ncomms4831.CrossRefPubMedGoogle Scholar
  18. De Jaeger, L., Verbeek, R. E., Draaisma, R. B., Martens, D. E., Springer, J., Eggink, G., et al. (2014). Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus:(I) mutant generation and characterization. Biotechnology for Biofuels, 7(1), 69.CrossRefGoogle Scholar
  19. De Riso, V., Raniello, R., Maumus, F., Rogato, A., Bowler, C., & Falciatore, A. (2009). Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Research, 37(14), e96.  https://doi.org/10.1093/nar/gkp448.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602.  https://doi.org/10.1038/nature09886.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Deng, X., Cai, J., & Fei, X. (2013). Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. BMC Biochemistry, 14(1), 38.CrossRefGoogle Scholar
  22. Deng, X., Cai, J., Li, Y., & Fei, X. (2014). Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnology Letters, 36(11), 2199–2208.  https://doi.org/10.1007/s10529-014-1593-3.CrossRefPubMedGoogle Scholar
  23. Deng, X., Li, Y., & Fei, X. (2011). The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii. Biomass and Bioenergy, 35(5), 1811–1817.  https://doi.org/10.1016/j.biombioe.2011.01.005.CrossRefGoogle Scholar
  24. Diner, R. E., Bielinski, V. A., Dupont, C. L., Allen, A. E., & Weyman, P. D. (2016). Refinement of the diatom episome maintenance sequence and improvement of conjugation-based DNA delivery methods. Frontiers in Bioengineering and Biotechnology.  https://doi.org/10.3389/fbioe.2016.00065.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Diner, R. E., Noddings, C. M., Lian, N. C., Kang, A. K., McQuaid, J. B., Jablanovic, J., et al. (2017). Diatom centromeres suggest a mechanism for nuclear DNA acquisition. Proceedings of the National Academy of Sciences, 114(29), E6015–E6024.  https://doi.org/10.1073/pnas.1700764114.CrossRefGoogle Scholar
  26. Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nature Biotechnology, 34(2), 184–191.  https://doi.org/10.1038/nbt.3437.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Domozych, D. S., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P., & Willats, W. G. T. (2012). The cell walls of green algae: A journey through evolution and diversity. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2012.00082.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution–principles and applications for biotechnology. Microbial Cell Factories, 12(1), 64.CrossRefGoogle Scholar
  29. Ferenczi, A., Pyott, D. E., Xipnitou, A., & Molnar, A. (2017). Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proceedings of the National Academy of Sciences, 114(51), 13567.  https://doi.org/10.1073/pnas.1710597114.CrossRefGoogle Scholar
  30. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600), 517.  https://doi.org/10.1038/nature17945.CrossRefPubMedGoogle Scholar
  31. Fu, W., Chaiboonchoe, A., Khraiwesh, B., Nelson, D., Al-Khairy, D., Mystikou, A., et al. (2016). Algal cell factories: approaches, applications, and potentials. Marine Drugs, 14(12), 225.  https://doi.org/10.3390/md14120225.CrossRefPubMedCentralGoogle Scholar
  32. Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109(39), E2579–E2586.  https://doi.org/10.1073/pnas.1208507109.CrossRefGoogle Scholar
  33. Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329–335.  https://doi.org/10.1038/nature11479.CrossRefPubMedGoogle Scholar
  34. Gimpel, J. A., Henríquez, V., & Mayfield, S. P. (2015). In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity. Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2015.01376.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I., & Hegemann, P. (2017). Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. The Plant Cell, 29(10), 2498–2518.  https://doi.org/10.1105/tpc.17.00659.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Guihéneuf, F., Khan, A., & Tran, L.-S. P. (2016). Genetic engineering: A promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2016.00400.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hallmann, A., Rappel, A., & Sumper, M. (1997). Gene replacement by homologous recombination in the multicellular green alga Volvox carteri. Proceedings of the National Academy of Sciences, 94(14), 7469–7474.CrossRefGoogle Scholar
  38. Hatoum-Aslan, A., Maniv, I., & Marraffini, L. A. (2011). Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proceedings of the National Academy of Sciences, 108(52), 21218–21222.  https://doi.org/10.1073/pnas.1112832108.CrossRefGoogle Scholar
  39. Hildebrand, M., Abbriano, R. M., Polle, J. E., Traller, J. C., Trentacoste, E. M., Smith, S. R., et al. (2013). Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Current Opinion in Chemical Biology, 17(3), 506–514.  https://doi.org/10.1016/j.cbpa.2013.02.027.CrossRefPubMedGoogle Scholar
  40. Hopes, A., Nekrasov, V., Kamoun, S., & Mock, T. (2016). Editing of the urease gene by CRISPR–Cas in the diatom Thalassiosira pseudonana. Plant Methods.  https://doi.org/10.1186/s13007-016-0148-0.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639.  https://doi.org/10.1111/j.1365-313X.2008.03492.x.CrossRefPubMedGoogle Scholar
  42. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433.CrossRefGoogle Scholar
  43. Jeon, S., Lim, J.-M., Lee, H.-G., Shin, S.-E., Kang, N. K., Park, Y.-I., et al. (2017). Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels.  https://doi.org/10.1186/s13068-017-0957-z.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jia, Y., Xue, L., Liu, H., & Li, J. (2009). Characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene from the halotolerant alga Dunaliella salina and inhibition of its expression by RNAi. Current Microbiology, 58(5), 426–431.  https://doi.org/10.1007/s00284-008-9333-3.CrossRefPubMedGoogle Scholar
  45. Jiang, W., Brueggeman, A. J., Horken, K. M., Plucinak, T. M., & Weeks, D. P. (2014). Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryotic Cell, 13(11), 1465–1469.  https://doi.org/10.1128/EC.00213-14.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188.  https://doi.org/10.1093/nar/gkt780.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science.  https://doi.org/10.1126/science.1225829.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kao, P.-H., & Ng, I.-S. (2017). CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresource Technology, 245, 1527–1537.  https://doi.org/10.1016/j.biortech.2017.04.111.CrossRefPubMedGoogle Scholar
  49. Karas, B. J., Diner, R. E., Lefebvre, S. C., McQuaid, J., Phillips, A. P. R., Noddings, C. M., et al. (2015). Designer diatom episomes delivered by bacterial conjugation. Nature Communications.  https://doi.org/10.1038/ncomms7925.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kawaroe, M., Sudrajat, A., Hwangbo, J., & Augustine, D. (2015). Chemical mutagenesis of microalgae Nannochloropsis sp. using EMS (ethyl methanesulfonate). British Journal of Applied Science & Technology, 8(5), 494–505.  https://doi.org/10.9734/BJAST/2015/16862.CrossRefGoogle Scholar
  51. Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie, Z., et al. (2014). CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature Methods, 11(7), 723–726.  https://doi.org/10.1038/nmeth.2969.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., & Matsuda, Y. (2016). Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proceedings of the National Academy of Sciences, 113(35), 9828–9833.  https://doi.org/10.1073/pnas.1603112113.CrossRefGoogle Scholar
  53. Kilian, O., Benemann, C. S. E., Niyogi, K. K., & Vick, B. (2011). High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proceedings of the National Academy of Sciences, 108(52), 21265–21269.  https://doi.org/10.1073/pnas.1105861108.CrossRefGoogle Scholar
  54. Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H. R., et al. (2015). Digenome-seq: Genome-wide profiling of CRISPR–Cas9 off-target effects in human cells. Nature Methods, 12(3), 237–243.  https://doi.org/10.1038/nmeth.3284.CrossRefPubMedGoogle Scholar
  55. Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012–1019.  https://doi.org/10.1101/gr.171322.113.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S. H., & Kim, J. S. (2016). Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 34(8), 863.  https://doi.org/10.1038/nbt.3609.CrossRefPubMedGoogle Scholar
  57. Kim, H. K., Song, M., Lee, J., Menon, A. V., Jung, S., Kang, Y. M., et al. (2017). In vivo high-throughput profiling of CRISPR–Cpf1 activity. Nature Methods, 14(2), 153.  https://doi.org/10.1038/nmeth.4104.CrossRefPubMedGoogle Scholar
  58. Kirst, H., Garcia-Cerdan, J. G., Zurbriggen, A., Ruehle, T., & Melis, A. (2012). Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 Gene. Plant Physiology, 160(4), 2251–2260.  https://doi.org/10.1104/pp.112.206672.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., et al. (2016a). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490–495.  https://doi.org/10.1038/nature16526.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kleinstiver, B. P., Tsai, S. Q., Prew, M. S., Nguyen, N. T., Welch, M. M., Lopez, J. M., et al. (2016b). Genome-wide specificities of CRISPR–Cas Cpf1 nucleases in human cells. Nature Biotechnology, 34(8), 869.  https://doi.org/10.1038/nbt.3620.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kleinstiver, B. P., Wolfs, J. M., Kolaczyk, T., Roberts, A. K., Hu, S. X., & Edgell, D. R. (2012). Monomeric site-specific nucleases for genome editing. Proceedings of the National Academy of Sciences, 109(21), 8061–8066.  https://doi.org/10.1073/pnas.1117984109.CrossRefGoogle Scholar
  62. Knothe, G., Krahl, J., & Van Gerpen, J. (2010). Preface to the first edition. In The Biodiesel Handbook (2nd Edn., p. vii). Elsevier.  https://doi.org/10.1016/B978-1-893997-62-2.50003-6.
  63. Koblenz, B., & Lechtreck, K.-F. (2005). The NIT1 promoter allows inducible and reversible silencing of Centrin in Chlamydomonas reinhardtii. Eukaryotic Cell, 4(11), 1959–1962.  https://doi.org/10.1128/EC.4.11.1959-1962.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kodym, A., & Afza, R. (2003). Physical and chemical mutagenesis. In E. Grotewold (Ed.), Plant functional genomics (Vol. 236, pp. 189–204). New Jersey: Humana Press.  https://doi.org/10.1385/1-59259-413-1:189.
  65. Komor, A. C., Badran, A. H., & Liu, D. R. (2017). CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 168(1–2), 20–36.  https://doi.org/10.1016/j.cell.2016.10.044.CrossRefPubMedGoogle Scholar
  66. Kong, F., Liang, Y., Légeret, B., Beyly-Adriano, A., Blangy, S., Haslam, R. P., et al. (2017). Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. The Plant Journal, 90(2), 358–371.  https://doi.org/10.1111/tpj.13498.CrossRefPubMedGoogle Scholar
  67. Koonin, E. V., & Krupovic, M. (2015). Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nature Reviews Genetics, 16(3), 184.  https://doi.org/10.1038/nrg3859.CrossRefPubMedGoogle Scholar
  68. Kumar, S. (2015). GM algae for biofuel production: Biosafety and risk assessment. Collect Biosaf Rev, 9, 52–75.Google Scholar
  69. Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B., & Valen, E. (2016). CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Research, 44(W1), W272–W276.  https://doi.org/10.1093/nar/gkw398.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lei, Y., Lu, L., Liu, H.-Y., Li, S., Xing, F., & Chen, L.-L. (2014). CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Molecular Plant, 7(9), 1494–1496.  https://doi.org/10.1093/mp/ssu044.CrossRefPubMedGoogle Scholar
  71. Li, L.-C., Okino, S. T., Zhao, H., Pookot, D., Place, R. F., Urakami, S., et al. (2006). Small dsRNAs induce transcriptional activation in human cells. Proceedings of the National Academy of Sciences, 103(46), 17337–17342.CrossRefGoogle Scholar
  72. Li, D., Wang, L., Zhao, Q., Wei, W., & Sun, Y. (2015). Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresource Technology, 185, 269–275.  https://doi.org/10.1016/j.biortech.2015.03.011.CrossRefPubMedGoogle Scholar
  73. Liu, H., Ding, Y., Zhou, Y., Jin, W., Xie, K., & Chen, L.-L. (2017a). CRISPR-P 2.0: An improved CRISPR–Cas9 tool for genome editing in plants. Molecular Plant, 10(3), 530–532.  https://doi.org/10.1016/j.molp.2017.01.003.CrossRefPubMedGoogle Scholar
  74. Liu, T., Pan, S., Li, Y., Peng, N., & She, Q. (2017b). Type III CRISPR–Cas system: Introduction and its application for genetic manipulations. Current Issues in Molecular Biology, 26, 1–14.  https://doi.org/10.21775/cimb.026.001.CrossRefPubMedGoogle Scholar
  75. Lü, J., Sheahan, C., & Fu, P. (2011). Metabolic engineering of algae for fourth generation biofuels production. Energy & Environmental Science, 4(7), 2451.  https://doi.org/10.1039/c0ee00593b.CrossRefGoogle Scholar
  76. Ma, X., Yao, L., Yang, B., Lee, Y. K., Chen, F., & Liu, J. (2017). RNAi-mediated silencing of a pyruvate dehydrogenase kinase enhances triacylglycerol biosynthesis in the oleaginous marine alga Nannochloropsis salina. Scientific Reports, 7(1), 11485.  https://doi.org/10.1038/s41598-017-11932-4.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Maeder, M. L., Linder, S. J., Cascio, V. M., Fu, Y., Ho, Q. H., & Joung, J. K. (2013). CRISPR RNA–guided activation of endogenous human genes. Nature Methods, 10(10), 977–979.  https://doi.org/10.1038/nmeth.2598.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1(1), 7.  https://doi.org/10.1186/1745-6150-1-7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467.  https://doi.org/10.1038/nrmicro2577.CrossRefPubMedGoogle Scholar
  80. Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–963.  https://doi.org/10.1038/nmeth.2649.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Meinecke, L., Alawady, A., Schroda, M., Willows, R., Kobayashi, M. C., Niyogi, K. K., et al. (2010). Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. Plant Molecular Biology, 72(6), 643–658.  https://doi.org/10.1007/s11103-010-9604-9.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Miller, J., McLachlan, A. D., & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO Journal, 4(6), 1609–1614.CrossRefGoogle Scholar
  83. Mojica, F. J., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246.CrossRefGoogle Scholar
  84. Mojica, F. J., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182.  https://doi.org/10.1007/s00239-004-0046-3.CrossRefPubMedGoogle Scholar
  85. Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski, S., et al. (2009). Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii: Artificial miRNAs in chlamydomonas. The Plant Journal, 58(1), 165–174.  https://doi.org/10.1111/j.1365-313X.2008.03767.x.CrossRefPubMedGoogle Scholar
  86. Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M., & Valen, E. (2014). CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42(W1), W401–W407.  https://doi.org/10.1093/nar/gku410.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Nakade, S., Yamamoto, T., & Sakuma, T. (2017). Cas9, Cpf1 and C2c1/2/3—What’s next? Bioengineered, 8(3), 265–273.  https://doi.org/10.1080/21655979.2017.1282018.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Nazari, F., & Raheb, J. (2015). Genetic engineering of microalgae for enhanced biodiesel production suitable fuel replacement of fossil fuel as a novel energy source. American Journal of Life Sciences, 3(1), 32.  https://doi.org/10.11648/j.ajls.20150301.17.CrossRefGoogle Scholar
  89. Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P., & Lu, T. K. (2014). Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Molecular Cell, 54(4), 698–710.  https://doi.org/10.1016/j.molcel.2014.04.022.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., & Winge, P. (2016). A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports, 6, 24951.  https://doi.org/10.1038/srep24951.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Oey, M., Ross, I. L., Stephens, E., Steinbeck, J., Wolf, J., Radzun, K. A., et al. (2013). RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS ONE, 8(4), e61375.  https://doi.org/10.1371/journal.pone.0061375.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Palombella, A. L., & Dutcher, S. K. (1998). Identification of the gene encoding the tryptophan synthase β-subunit from Chlamydomonas reinhardtii. Plant Physiology, 117(2), 455–464.CrossRefGoogle Scholar
  93. Park, J., Bae, S., & Kim, J.-S. (2015). Cas-Designer: A web-based tool for choice of CRISPR–Cas9 target sites. Bioinformatics.  https://doi.org/10.1093/bioinformatics/btv537.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Park, J., Lim, K., Kim, J.-S., & Bae, S. (2017). Cas-analyzer: An online tool for assessing genome editing results using NGS data. Bioinformatics, 33(2), 286–288.  https://doi.org/10.1093/bioinformatics/btw561.CrossRefPubMedGoogle Scholar
  95. Poliner, E., Takeuchi, T., Du, Z.-Y., Benning, C., & Farré, E. M. (2018). Nontransgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synthetic Biology, 7(4), 962–968.  https://doi.org/10.1021/acssynbio.7b00362.CrossRefPubMedGoogle Scholar
  96. Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(3), 653–663.  https://doi.org/10.1099/mic.0.27437-0.CrossRefPubMedGoogle Scholar
  97. Puchta, H., & Fauser, F. (2013). Gene targeting in plants: 25 years later. The International Journal of Developmental Biology, 57(6–7–8), 629–637.  https://doi.org/10.1387/ijdb.130194hp.CrossRefPubMedGoogle Scholar
  98. Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.  https://doi.org/10.1128/EC.00364-09.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Rath, D., Amlinger, L., Rath, A., & Lundgren, M. (2015). The CRISPR–Cas immune system: Biology, mechanisms and applications. Biochimie, 117, 119–128.  https://doi.org/10.1016/j.biochi.2015.03.025.CrossRefPubMedGoogle Scholar
  100. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., et al. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels, 8(1), 42.  https://doi.org/10.1186/s13068-015-0220-4.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Schroda, M. (2006). RNA silencing in chlamydomonas: Mechanisms and tools. Current Genetics, 49(2), 69–84.  https://doi.org/10.1007/s00294-005-0042-1.CrossRefPubMedGoogle Scholar
  102. Schunder, E., Rydzewski, K., Grunow, R., & Heuner, K. (2013). First indication for a functional CRISPR/Cas system in Francisella tularensis. International Journal of Medical Microbiology, 303(2), 51–60.  https://doi.org/10.1016/j.ijmm.2012.11.004.CrossRefPubMedGoogle Scholar
  103. Shah, S. A., Erdmann, S., Mojica, F. J., & Garrett, R. A. (2013). Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biology, 10(5), 891–899.  https://doi.org/10.4161/rna.23764.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Sharp, P. A. (2001). RNA interference—2001. Genes & Development, 15(5), 485–490.CrossRefGoogle Scholar
  105. Shin, S.-E., Lim, J.-M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., et al. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6, 27810.  https://doi.org/10.1038/srep27810.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., et al. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11(1), 7.CrossRefGoogle Scholar
  107. Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30(7), 1335–1342.  https://doi.org/10.1038/emboj.2011.41.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Slattery, S. S., Diamond, A., Wang, H., Therrien, J. A., Lant, J. T., Jazey, T., et al. (2018). An expanded plasmid-based genetic toolbox enables Cas9 genome editing and stable maintenance of synthetic pathways in Phaeodactylum tricornutum. ACS Synthetic Biology, 7(2), 328–338.  https://doi.org/10.1021/acssynbio.7b00191.CrossRefPubMedGoogle Scholar
  109. Spicer, A., & Molnar, A. (2018). Gene editing of microalgae: Scientific progress and regulatory challenges in Europe. Biology, 7(1), 21.  https://doi.org/10.3390/biology7010021.CrossRefPubMedCentralGoogle Scholar
  110. Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. (2015). CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE, 10(4), e0124633.  https://doi.org/10.1371/journal.pone.0124633.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Storms, Z. J., Cameron, E., de la Hoz Siegler, H., & McCaffrey, W. C. (2014). A simple and rapid protocol for measuring neutral lipids in algal cells using fluorescence. Journal of Visualized Experiments.  https://doi.org/10.3791/51441.CrossRefPubMedGoogle Scholar
  112. Stukenberg, D., Zauner, S., Dell’Aquila, G., & Maier, U. G. (2018). Optimizing CRISPR/Cas9 for the diatom Phaeodactylum tricornutum. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2018.00740.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., et al. (2017). A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3(3), 17018.  https://doi.org/10.1038/nplants.2017.18.CrossRefPubMedGoogle Scholar
  114. Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Gle, C., Hartmann, A. C., Hildebrand, M., et al. (2013). Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proceedings of the National Academy of Sciences, 110(49), 19748–19753.  https://doi.org/10.1073/pnas.1309299110.CrossRefGoogle Scholar
  115. Verruto, J., Francis, K., Wang, Y., Low, M. C., Greiner, J., Tacke, S., et al. (2018). Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proceedings of the National Academy of Sciences, 115(30), E7015–E7022.  https://doi.org/10.1073/pnas.1718193115.CrossRefGoogle Scholar
  116. Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S., & Xu, J. (2016). Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal.  https://doi.org/10.1111/tpj.13307.CrossRefPubMedGoogle Scholar
  117. Wei, Y., Terns, R. M., & Terns, M. P. (2015). Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes & Development, 29(4), 356–361.  https://doi.org/10.1101/gad.257550.114.CrossRefGoogle Scholar
  118. Wei, L., Xin, Y., Wang, Q., Yang, J., Hu, H., & Xu, J. (2017). RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica. The Plant Journal, 89(6), 1236–1250.  https://doi.org/10.1111/tpj.13411.CrossRefPubMedGoogle Scholar
  119. Westra, E. R., van Erp, P. B., Künne, T., Wong, S. P., Staals, R. H., Seegers, C. L., et al. (2012). CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by cascade and Cas3. Molecular Cell, 46(5), 595–605.  https://doi.org/10.1016/j.molcel.2012.03.018.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Wijffels, R. H., & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329(5993), 796.  https://doi.org/10.1126/science.1189003.CrossRefPubMedGoogle Scholar
  121. Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining, 4(3), 287–295.CrossRefGoogle Scholar
  122. Work, V. H., Radakovits, R., Jinkerson, R. E., Meuser, J. E., Elliott, L. G., Vinyard, D. J., et al. (2010). Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell, 9(8), 1251–1261.  https://doi.org/10.1128/EC.00075-10.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Xue, J., Niu, Y.-F., Huang, T., Yang, W.-D., Liu, J.-S., & Li, H.-Y. (2015). Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering, 27, 1–9.  https://doi.org/10.1016/j.ymben.2014.10.002.CrossRefPubMedGoogle Scholar
  124. Yamano, T., Sato, E., Iguchi, H., Fukuda, Y., & Fukuzawa, H. (2015). Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences, 112(23), 7315–7320.  https://doi.org/10.1073/pnas.1501659112.CrossRefGoogle Scholar
  125. Yang, J., Pan, Y., Bowler, C., Zhang, L., & Hu, H. (2016). Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Research, 15, 50–58.  https://doi.org/10.1016/j.algal.2016.02.004.CrossRefGoogle Scholar
  126. Yi, Z., Xu, M., Magnusdottir, M., Zhang, Y., Brynjolfsson, S., & Fu, W. (2015). Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation. Marine Drugs, 13(10), 6138–6151.  https://doi.org/10.3390/md13106138.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Yu, S., Zhao, Q., Miao, X., & Shi, J. (2013). Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresource Technology, 147, 499–507.  https://doi.org/10.1016/j.biortech.2013.08.069.CrossRefPubMedGoogle Scholar
  128. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell, 163(3), 759–771.  https://doi.org/10.1016/j.cell.2015.09.038.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International, 2016, 1–8.  https://doi.org/10.1155/2016/8792548.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  1. 1.International Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia

Personalised recommendations