Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 760–771 | Cite as

A simple, inexpensive, scalable and low maintenance hydroponics system for growing halophyte: Lepidium sativum L. (Brassicaceae), ideal for manipulating salt stress and inferring gene expression levels

  • Babita Mishra
  • Tarun Kant
Original Article


Soil salinity is a serious problem that limits productivity and survival of plants. Arabidopsis thaliana has served as a model plant to study different aspects of plant physiology and molecular genetics. However, its glycophytic nature, makes it unsuitable for salinity stress studies as it does not survive high dosage of salinity for extended periods. Moreover, the mechanisms of salt tolerance may be more evolved and possible different in halophytes. Hence, halophytes are better suited for such studies. With this background, the present investigation was initiated with the objectives of finding a suitable halophytic close relative of A. thaliana which may enable a better understanding of salt tolerance mechanisms. The present report describes the establishment of Lepidium sativum L. as a suitable halophyte for undertaking molecular physiology experiments under salt stress conditions. An efficient yet simple hydroponic culture system for L. sativum developed under the present investigation along with growth performance of the plant at varying levels of NaCl treatments (0–200 mM concentration) is also reported, showcasing its effective use in giving salt treatments that are amicable to any molecular biology laboratory involved in study of gene expression.


Comparative genomics Gene expression Salinity Abiotic stress 



The authors thank Indian Council of Forestry Research and Education (ICFRE), Dehradun—an autonomous body under Ministry of Environment, Forest and Climate Change, Government of India, New Delhi for the project grant.

Supplementary material

40502_2018_422_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
40502_2018_422_MOESM2_ESM.jpg (303 kb)
Supplementary material 2 (JPEG 303 kb)
40502_2018_422_MOESM3_ESM.jpg (241 kb)
Supplementary material 3 (JPEG 241 kb)
40502_2018_422_MOESM4_ESM.jpg (347 kb)
Supplementary material 4 (JPEG 347 kb)
40502_2018_422_MOESM5_ESM.jpg (282 kb)
Supplementary material 5 (JPEG 281 kb)
40502_2018_422_MOESM6_ESM.docx (13 kb)
Supplementary material 6 (DOCX 12 kb)
40502_2018_422_MOESM7_ESM.jpg (99 kb)
Supplementary material 7 (JPEG 100 kb)
40502_2018_422_MOESM8_ESM.jpg (95 kb)
Supplementary material 8 (JPEG 95 kb)
40502_2018_422_MOESM9_ESM.jpg (96 kb)
Supplementary material 9 (JPEG 97 kb)
40502_2018_422_MOESM10_ESM.jpg (81 kb)
Supplementary material 10 (JPEG 82 kb)


  1. Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management. FAO Soils Bulletin, 39, 131.Google Scholar
  2. Alatorre-Cobos, F., Calderón-Vázquez, C., Ibarra-Laclette, E., Yong-Villalobos, L., Pérez-Torres, C. A., Oropeza-Aburto, A., et al. (2014). An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions. BMC Plant Biology, 14, 69.CrossRefGoogle Scholar
  3. Arteca, R. N., & Arteca, J. M. (2000). A novel method for growing Arabidopsis thaliana plants hydroponically. Physiologia Plantarum, 108, 188–193.CrossRefGoogle Scholar
  4. Atwell, B. J., Kriedemann, P. E., Turnbull, C. G. N., Eamus, D., & Bieleski, R. L. (1999). Plants in action-adaptation in nature, performance in cultivation. Australian Society of Plant Scientists, New Zealand Society of Plant Biologists & New Zealand Institute of Agricultural and Horticultural Science (Vol. 8, p. 664). Southyarra: Macmillan education of Australia.Google Scholar
  5. Benina, M., Obata, T., Mehterov, N., Ivanov, I., Petrov, V., Toneva, V., et al. (2013). Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science, 4, 449.CrossRefGoogle Scholar
  6. Dassanayake, M., Oh, D. H., Haas, J. S., Hernandez, A., Hong, H., Ali, S., et al. (2011). The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics, 43, 913–920.CrossRefGoogle Scholar
  7. Dittami, S. M., & Tonon, T. (2012). Genomes of extremophile crucifers: New platforms for comparative genomics and beyond. Genome Biology, 13, 166.CrossRefGoogle Scholar
  8. Epstein, E., & Bloom, A. J. (2005). Mineral nutrition of plants: principles and perspectives (2nd ed., p. 405). Sunderland, MA: Sinauer Associates.Google Scholar
  9. Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytology, 179, 945–963.CrossRefGoogle Scholar
  10. Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.CrossRefGoogle Scholar
  11. Flowers, T. J., Hajibagheri, M. A., & Clipson, N. J. W. (1986). Halophytes. The Quarterly Review of Biology, 61, 313–337.CrossRefGoogle Scholar
  12. Fougere, F., Rudulier, D. Le, & Streeter, J. G. (1991). Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology, 96, 1228–1236.CrossRefGoogle Scholar
  13. Gibeaut, D. M., Hulett, J., Cramer, G. R., & Seemann, J. R. (1997). Maximal biomass of Arabidopsis thaliana using a simple, low maintenance hydroponic method and favorable environmental conditions. Plant Physiology, 115, 317–319.CrossRefGoogle Scholar
  14. Gong, Q., Li, P., Ma, S., Rupassara, I., & Bohnert, H. J. (2005). Salinity stress adaptation competence in the extremophile Thellungiella halophile in comparison with its relative Arabidopsis thaliana. Plant Journal, 44, 826–839.CrossRefGoogle Scholar
  15. Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology, 31, 149–190.CrossRefGoogle Scholar
  16. Hoagland, D. R., & Arnon, D. (1950). Circular. California Agricultural Experiment Station, 347(2nd edit), 32.Google Scholar
  17. Jennings, D. H. (1968). Halophytes, succulence and sodium in plants—a unified theory. New Phytologist, 67, 899–911.CrossRefGoogle Scholar
  18. Jeschke, W. D. (1984). K+–Na+ exchanges in cellular membranes, intracellular compartmentation of cations, and salt tolerance. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in plants. strategies for crop improvement (pp. 37–66). New York: Wiley.Google Scholar
  19. Kittiwongwattana, C., & Vuttipongchaikij, S. (2013). Effects of nutrient media on vegetative growth of Lemna minor and Landoltia punctate during in vitro and ex vitro cultivation. Maejo International Journal of Science and Technology, 7(01), 60–69.Google Scholar
  20. Koch, M. A., & German, D. A. (2013). Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers in Plant Science, 4, 267.CrossRefGoogle Scholar
  21. Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design program Primer3. Bioinformatics, 23(10), 1289–1291.CrossRefGoogle Scholar
  22. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.CrossRefGoogle Scholar
  23. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assay with tobacco tissue culture. Physiologycal Plantarun, 15, 473–497.CrossRefGoogle Scholar
  24. Norén, H., Svensson, P., & Andersson, B. (2004). A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiologia Plantarum, 121, 343–348.CrossRefGoogle Scholar
  25. Rengasamy, P. (2006a). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023.CrossRefGoogle Scholar
  26. Rengasamy, P. (2006b). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017–1023.CrossRefGoogle Scholar
  27. Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37, 613–620.CrossRefGoogle Scholar
  28. Robison, M. M., Smid, M. P. L., & Wolyn, D. J. (2006). High-quality and homogeneous Arabidopsis thaliana plants from a simple and inexpensive method of hydroponic cultivation. Canadian Journal of Botany, 84, 1009–1012.CrossRefGoogle Scholar
  29. Ruan, C. J., Teixeira da Silva, J. A., Mapper, S., Qin, P., & Lutts, S. (2010). Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences, 29, 329–359.CrossRefGoogle Scholar
  30. Sambrook, J., & Russell, D. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  31. Schlesier, B., Bréton, F., & Mock, H. P. (2003). A hydroponic culture system for growing Arabidopsis thaliana plantlets under sterile conditions. Plant Molecular Biology Reporter, 21, 449–456.CrossRefGoogle Scholar
  32. Shabala, S., & MacKay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151–199.CrossRefGoogle Scholar
  33. Smeets, K., Ruytinx, J., vanBelleghem, F., Semane, B., Lin, D., Vangronsveld, J., et al. (2008). Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiology and Biochemistry, 46, 212–218.CrossRefGoogle Scholar
  34. Taji, T., Komatsu, K., Katori, T., Kawasaki, Y., Sakata, Y., Tanaka, S., et al. (2010). Comparative genomic analysis of 1047 completely sequenced cdnas from an arabidopsis-related model halophyte, Thellungiella halophila. BMC Plant Biology, 10, 261.CrossRefGoogle Scholar
  35. Teakle, N. L., & Tyerman, S. D. (2010). Mechanisms of Cl transport contributing to salt tolerance. Plant, Cell and Environment, 33, 566–589.CrossRefGoogle Scholar
  36. Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., et al. (2003). A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana. BMC Plant Biology, 3, 2.CrossRefGoogle Scholar
  37. Toda, T., Koyama, H., & Hara, T. (1999). A simple hydroponic culture method for the development of a highly viable root system in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 63, 210–212.CrossRefGoogle Scholar
  38. Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., et al. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115.CrossRefGoogle Scholar
  39. Upasani, U., & Desai, S. (1990). Sambhar salt lake—chemical composition of brines and studies on haloalkaliphilic archaebacteria. Archives of Microbiology, 154(6), 589–593.CrossRefGoogle Scholar
  40. Vera-Estrella, R., Barkla, B. J., & Pantoja, O. (2014). Comparative 2D-dige analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Journal of Proteomics, 111, 113–127.CrossRefGoogle Scholar
  41. Waisel, Y. (1972). The biology of halophytes (p. 410). New York: Academic Press.Google Scholar
  42. Wu, H. J., Zhang, Z., Wang, J. Y., Oh, D. H., Dassanayake, M., Liu, M. B., et al. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America, 109, 12219–12224.CrossRefGoogle Scholar
  43. Yu, B., & Li, W. (2014). Comparative profiling of membrane lipids during water stress in Thellungiella salsuginea and its relative Arabidopsis thaliana. Phytochemistry, 108, 77–86.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  1. 1.Molecular Genetics Laboratory, Genetics and Tree Improvement DivisionArid Forest Research InstituteJodhpurIndia

Personalised recommendations