Advertisement

Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 647–652 | Cite as

Genetic engineering for salt and drought stress tolerance in peanut (Arachis hypogaea L.)

  • P. B. Kavi Kishor
  • K. Venkatesh
  • P. Amareshwari
  • P. Hima Kumari
  • D. L. Punita
  • S. Anil Kumar
  • A. Roja Rani
  • Naveen Puppala
Review Article
  • 59 Downloads

Abstract

Peanut (Arachis hypogaea L.) is an important oil-yielding cash crop as well as an exportable agricultural commodity. It is a rich source of proteins, fats, and plays a crucial role in oilseed economy of India and many other countries. Peanut frequently encounters water-deficit and soil salinity conditions that affect its growth and productivity. Traditional breeding methods were not successful in generating lines tolerant to abiotic stress conditions. On the other hand, introduction of genes through genetic engineering methods conferred tolerance against both biotic and abiotic stresses. In all, the transgenics that were developed so far, stable inheritance of transgenes was noticed. Transgenics displayed higher biomass, yield and better resistance to abiotic stresses when compared with wild-type plants inferring that this method has potential for improving the crop with desired traits. Genetically engineered stress tolerant peanut plants could provide an avenue to the restoration of farmlands lost due to severe drought or salinity conditions and highlight the potential of this technology for developing climate resilient crop.

Keywords

Arachis hypogaea Drought stress Genetic engineering Salt stress 

References

  1. Amareshwari, P. (2017). Overexpression of Sorghum bicolor vacuolar H+ pyrophosphatase (SbVPPase) to improve salt and drought stress tolerance in peanut (Arachis hypogaea L.). Thesis submitted to the Osmania University, Hyderabad for the award of Ph. D. Degree.Google Scholar
  2. Asif, M. A., Zafar, Y., Iqbal, J., Iqbal, M. M., Rashid, U., Ali, G. M., et al. (2011). Enhanced expression of AtNHX1, in transgenic peanut (Arachis hypogaea L.) improves salt and drought tolerance. Molecular Biotechnology, 49, 250–256.PubMedGoogle Scholar
  3. Banavath, J. N., Chakradhar, T., Pandit, V., Konduru, S., Guduru, K. K., Akila, C. S., et al. (2018). Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers Chemistry, 6, (34).  https://doi.org/10.1038/nrmicro280.Google Scholar
  4. Banjara, M., Zhu, L., Shen, G., Payton, P., & Zhang, H. (2012). Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnology Reports, 6, 59–67.Google Scholar
  5. Ben Romdhane, W., Ben-Saad, R., Meynard, D., Verdeil, J. L., Azaza, J., Zouari, N., et al. (2017). Ectopic expression of Aeluropus littoralis plasma membrane protein gene ALTMP1 confers abiotic stress tolerance in transgenic tobacco by improving water status and cation homeostasis. International Journal of Molecular Sciences, 18(4), 692.  https://doi.org/10.3390/ijms18040692.PubMedCentralGoogle Scholar
  6. Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Lavanya, M., Vadez, V., Serraj, R., et al. (2007). Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26, 2071–2082.PubMedGoogle Scholar
  7. Bhatnagar-Mathur, P., Devi, J. M., Serraj, R., Yamaguchi-Shinozaki, K., Vadez, V., & Sharma, K. K. (2004). Evaluation of transgenic peanutlines under water limited conditions. International Arachis Newsletter, 24, 33–34.Google Scholar
  8. Bhatnagar-Mathur, P., Rao, J. S., Vadez, V., Dumbala, S. R., Rathore, A., Yamaguchi-Shinozaki, K., et al. (2014). Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Molecular Breeding, 33, 327–340.Google Scholar
  9. Bhauso, T. D., Radhakrishnan, T., Kumar, A., Mishra, G. P., Dobaria, J. R., Patel, K., et al. (2014). Overexpression of bacterial mtlDgene in peanut improves drought tolerance through accumulation of mannitol. The Scientific World Journal.  https://doi.org/10.1155/2014/125967.PubMedPubMedCentralGoogle Scholar
  10. Bosamia, T. C., Mishra, G. P., Thankappan, R., & Dobaria, J. R. (2015). Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One, 10(6), e0129127.  https://doi.org/10.1371/journal.pone.0129127.PubMedPubMedCentralGoogle Scholar
  11. Chen, M., Yang, Q., Wang, T., Chen, N., Pan, L., Chi, X., et al. (2015). Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Canadian Journal of Plant Science, 95, 735–744.Google Scholar
  12. Chowdhury, S., Basu, A., & Kundu, S. (2017). Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in sesame. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2017.00410.PubMedPubMedCentralGoogle Scholar
  13. Eapen, S., & George, L. (1994). Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Reports, 13, 582–586.PubMedGoogle Scholar
  14. Feng, S., Wang, X., Zhang, X., Dang, P. M., Holbrook, C. C., Culbreath, A. K., et al. (2012). Peanut (Arachis hypogaea L) expressed sequence tag project: Progress and application. Comparative and Functional Genomics.  https://doi.org/10.1155/2012/373768.PubMedPubMedCentralGoogle Scholar
  15. Gaxiola, R. A., Fink, G. R., & Hirschi, K. D. (2002). Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiology, 129, 967–973.PubMedPubMedCentralGoogle Scholar
  16. Hassan, M., Akram, Z., Ali, S., Ali, G. M., Zafar, Y., Shah, Z. H., et al. (2016). Whisker-mediated transformation of peanut with chitinase gene enhances resistance to leaf spot disease. Crop Breeding and Applied Biotechnology, 16(2), 108–114.  https://doi.org/10.1590/1984-70332016v16n2a17.Google Scholar
  17. He, C., Yan, J., Shen, G., Fu, L., Holaday, A. S., Auld, D., et al. (2005). Expression of an Arabidopsis vacuolar sodium proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Biotechnology Reports, 46, 1848–1854.Google Scholar
  18. Holbrook, C. C., Ozias-Akins, P., Chu, Y., & Guo, B. (2011). Impact of molecular genetic research on peanut cultivar development. Agronomy, 1, 3–17.Google Scholar
  19. Janila, P., Nigam, S. N., Pandey, M. K., Nagesh, P., & Varshney, R. K. (2013). Groundnut improvement: Use of genetic and genomic tools. Frontiers in Plant Genetics and Genomic, 4, 1–16.Google Scholar
  20. Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., et al. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2016.01029.PubMedPubMedCentralGoogle Scholar
  21. Kiranmai, K., Lokanadha Rao, G., Pandurangaiah, M., Nareshkumar, A., Amaranatha Reddy, V., Lokesh, U., et al. (2018). A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2018.00346.PubMedPubMedCentralGoogle Scholar
  22. Kong, X., Pan, J., Zhang, M., Xing, X., Zhou, Y., Liu, Y., et al. (2011). ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell and Environment, 34(8), 1291–1303.  https://doi.org/10.1111/j.1365-3040.2011.02329.x.PubMedGoogle Scholar
  23. Liu, X., Song, Y., Xing, F., Wang, N., Wen, F., & Zhu, C. (2016). GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 253(5), 1265–1281.  https://doi.org/10.1007/s00709-015-0885-3.PubMedGoogle Scholar
  24. Livingstone, D. M., & Birch, R. G. (1995). Plant regeneration and microprojectile-mediated gene transfer in embryonic leaflets of peanut (Arachis hypogaea L.). Australian J Plant Physiology, 22, 585–591.Google Scholar
  25. Martinez-Beltran, J., & Manzur, C. L. (2005). Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the international salinity forum (pp. 311–313). Riverside, California, USA.Google Scholar
  26. Melvin, P., Bankapalli, K., D’Silva, P., & Shivaprasad, P. V. (2017). Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants. Plant Molecular Biology, 94(4–5), 381–397.  https://doi.org/10.1007/s11103-017-0613-9.PubMedGoogle Scholar
  27. Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D. T., Lee, O., et al. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences, 100(1), 358–363.  https://doi.org/10.1073/pnas.252641899.Google Scholar
  28. Mungala, A. J., Radhakrishnan, T., & Dobaria, J. R. (2008). In vitro Screening of 123 Indian peanut cultivars for sodium chloride induced salinity tolerance. World Journal of Agricultural Sciences, 4, 574–582.Google Scholar
  29. Nautiyal, P. C., Bandyopadhyay, A., Koradia, V. G., & Makad, M. (2000). Performance of groundnut germplasm and cultivars under saline water irrigation in the soils of Mundra in Gujarat, India. International Arachis Newsletter, 20, 80–82.Google Scholar
  30. Ozias-Akins, P., Schnall, J. A., Anderson, W. F., Singsit, C., Clemente, T. E., Adang, M. J., et al. (1993). Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Science, 93, 185–194.Google Scholar
  31. Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., et al. (2005). Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proceedings of the National Academy of Sciences USA, 102, 18830–18835.Google Scholar
  32. Peleg, Z., Reguera, M., Walia, H., & Blumwald, E. (2011). Cytokinin mediated source-sink modifications improve drought tolerance and increases grain yield in rice under water stress. Plant Biotechnology Journal, 9, 747–758.PubMedGoogle Scholar
  33. Pruthvi, V., Narasimhan, R., & Nataraja, K. N. (2014). Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One, 9(12), e111152.  https://doi.org/10.1371/journal.pone.0111152.PubMedPubMedCentralGoogle Scholar
  34. Qin, H., Gu, Q., Kuppu, S., Sun, L., Zhu, X., Mishra, N., et al. (2013). Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnology Reports, 7, 345–355.Google Scholar
  35. Qin, H., Gu, Q., Zhang, J., Sun, L., Kuppu, S., Zhang, Y., et al. (2011). Regulated expression of isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiology, 52, 1904–1914.PubMedGoogle Scholar
  36. Ramegowda, V., Senthil-kumar, M., Udayakumar, M., & Mysore, K. S. (2013). A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biology, 13(1), 193.  https://doi.org/10.1186/1471-2229-13-193.PubMedPubMedCentralGoogle Scholar
  37. Rana, K., & Mohanty, I. C. (2012). In vitro regeneration and genetic transformation in peanut (Arachis hypogaea L. cv. Smruti) for abiotic stress tolerance mediated by Agrobacterium tumifaciens. Journal of Today’s Biological Sciences: Research and Review, 1, 62–85.Google Scholar
  38. Sakakibara, H. (2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431–449.PubMedGoogle Scholar
  39. Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2014). Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One, 9(12), e110507.  https://doi.org/10.1371/journal.pone.0110507.PubMedPubMedCentralGoogle Scholar
  40. Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2016). Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science, 7, 935.  https://doi.org/10.3389/fpls.2016.00935.PubMedPubMedCentralGoogle Scholar
  41. Sarris, P. F., Duxbury, Z., Huh, S. U., Ma, Y., Segonzac, C., Sklenar, J., et al. (2015). A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 161(5), 1089–1100.  https://doi.org/10.1016/j.cell.2015.04.024.PubMedGoogle Scholar
  42. Sharma, K.K., & Anjaiah, V.V. (2000). An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Science, 159(1), 7–19.PubMedGoogle Scholar
  43. Singh, R., Issar, D., Zala, P. V., & Nautiyal, P. C. (2007). Variation in sensitivity to salinity in groundnut cultivars during seed germination and early seedling growth. Journal of SAT Agricultural Research, 5(1), 1–7.Google Scholar
  44. Smart, C. M., Scofield, S. R., Bevan, M. W., & Dyer, T. A. (1991). Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell, 3, 647–656.PubMedPubMedCentralGoogle Scholar
  45. Turan, S. (2018). Single-gene versus multigene transfer approaches for crop salt tolerance. In V. Kumar, S. Wani, P. Suprasanna, & L. S. Tran (Eds.), Salinity responses and tolerance in plants (Vol. 1, pp. 213–234). Cham: Springer.Google Scholar
  46. Vadez, V., Rao, S., Sharma, K. K., Bhatnagar-Mathur, P., & Devi, M. J. (2007). DREB1A allows for more water uptake in peanut by a large modification in the root/shoot ratio under water deficit. Journal of SAT Agricultural Research, 5(1), 1–5.Google Scholar
  47. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants: Features and applications. Trends in Biotechnology, 23, 48–55.PubMedGoogle Scholar
  48. Venkatesh, K. (2016). Development of transgenic peanut (Arachis hypogaea L.) lines by overexpression of Na+/H+ antiporter gene (SbSOS1) for enhanced salt tolerance. Thesis submitted to the Osmania University, Hyderabad for the award of Ph. D. Degree.Google Scholar
  49. Venkatesh, K., Rani, A., Amareshwari, R. P., & Katam, R. (2014). Applications of bioinformatics tools to genetic mapping and diversity in peanut. In N. Mallikarjun & R. Varshney (Eds.), Genetics genomics and breeding of peanuts (pp. 216–231). Boca Raton: CRC Press.  https://doi.org/10.1201/b16872-15.Google Scholar
  50. Wang, R. K., Li, L. L., Cao, Z. H., Zhao, Q., Li, M., Zhang, L. Y., et al. (2012). Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology, 79(1–2), 123–135.  https://doi.org/10.1007/s11103-012-9899-9.PubMedGoogle Scholar
  51. Wei, T., Deng, K., Liu, D., Gao, Y., Liu, Y., Yang, M., et al. (2016). Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant and Cell Physiology, 57(8), 1593–1609.  https://doi.org/10.1093/pcp/pcw084.PubMedGoogle Scholar
  52. Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.PubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  1. 1.Department of GeneticsOsmania UniversityHyderabadIndia
  2. 2.New Mexico State University, Agricultural Science Centre at ClovisClovisUSA

Personalised recommendations