Indian Journal of Plant Physiology

, Volume 23, Issue 4, pp 689–696 | Cite as

Efficient root systems for enhancing tolerance of crops to water and phosphorus limitation

  • Yinglong Chen
  • Zed Rengel
  • Jairo Palta
  • Kadambot H. M. Siddique
Review Article


Development of future crop varieties with efficient root systems for enhanced water and phosphorus uptake is essential for improving crop adaptation and hence food security. Root system architecture (RSA) traits that overcome low-water and low-phosphorus stresses are critical to maintaining structural and functional properties, and are considered the first-order targets in breeding programmes for rainfed environments. Modification of root system architecture could contribute to improvements of desirable agronomic and physiological traits such as biomass, yield, drought resistance, and tolerance to nutrient deficiencies. Advanced phenotyping, imaging, modelling and molecular biotechnologies offer promise in identifying RSA traits for efficient resource acquisition and adaptation to abiotic stresses. This review highlights the complexity and regulation of RSA in response to water and P stresses.


Root system architecture Drought stress Low-P stress Response pathway QTLs 



This study was supported by the CGIAR CRP Grain Legumes, the Australian Research Council (DP160103420), National Nature Science Foundation of China (31471946) and the Chinese Academy of Sciences “100 Talent” Program (A315021449).


  1. Bates, T. R., & Lynch, J. P. (2001). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil, 236(2), 243–250.Google Scholar
  2. Burton, A. L., Johnson, J. M., Foerster, J. M., Hirsch, C. N., Buell, C., Hanlon, M. T., et al. (2014). QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 127(11), 2293–2311.PubMedGoogle Scholar
  3. Cai, H., Chen, F., Mi, G., Zhang, F., Maurer, H. P., Liu, W., et al. (2012). Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetics, 125(6), 1313–1324.PubMedGoogle Scholar
  4. Camacho-Cristóbal, J. J., Rexach, J., Conéjéro, G., Al-Ghazi, Y., Nacry, P., & Doumas, P. (2008). PRD, an Arabidopsis AINTEGUMENTA-like gene, is involved in root architectural changes in response to phosphate starvation. Planta, 228(3), 511–522.PubMedGoogle Scholar
  5. Chen, Y., Djalovic, I., & Rengel, Z. (2015). Phenotyping for root traits. In J. Kumar, A. Pratap, & S. Kumar (Eds.), Phenomics in crop plants: Trends, options and limitations (pp. 101–128). New Delhi: Springer India.Google Scholar
  6. Chen, Y., Dunbabin, V., Diggle, A., Siddique, K., & Rengel, Z. (2011). Development of a novel semi-hydroponic phenotyping system for studying root architecture. Functional Plant Biology, 38(5), 355–363.Google Scholar
  7. Chen, Y., Dunbabin, V., Diggle, A., Siddique, K., & Rengel, Z. (2013a). Phosphorus starvation boosts carboxylate secretion in P-deficient genotypes of Lupinus angustifolius with contrasting root structure. Crop & Pasture Science, 64(6), 588–599.Google Scholar
  8. Chen, Y., Dunbabin, V., Postma, J., Diggle, A., Siddique, K., & Rengel, Z. (2013b). Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant and Soil, 1–19.Google Scholar
  9. Chen, Y. L., Dunbabin, V. M., Postma, J. A., Diggle, A. J., Siddique, K. H., & Rengel, Z. (2013c). Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply. Plant and Soil, 372(1–2), 319–337.Google Scholar
  10. Chen, Y., Ghanem, M., & Siddique, K. (2017). Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. Journal of Experimental Botany, 68(8), 1987–1999.PubMedGoogle Scholar
  11. Chen, Z. H., Jenkins, G. I., & Nimmo, H. G. (2008). Identification of an F-Box protein that negatively regulates Pi starvation responses. Plant and Cell Physiology, 49(12), 1902–1906.PubMedGoogle Scholar
  12. Chen, Z., Nimmo, G., Jenkins, G., & Nimmo, H. (2007). BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochemical Journal, 405, 191–198.PubMedPubMedCentralGoogle Scholar
  13. Chen, Y. L., Palta, J., Clements, J., Buirchell, B., Siddique, K. H., & Rengel, Z. (2014). Root architecture alteration of narrow-leafed lupin and wheat in response to soil compaction. Field Crops Research, 165, 61–70.Google Scholar
  14. Chen, Y., Shan, F., Nelson, M., Siddique, K., & Rengel, Z. (2016). Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius. Journal of Experimental Botany, 67(12), 3683–3697.PubMedPubMedCentralGoogle Scholar
  15. Chimungu, J. G., Loades, K. W., & Lynch, J. P. (2015a). Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays). Journal of Experimental Botany, erv121.Google Scholar
  16. Chimungu, J. G., Maliro, M. F., Nalivata, P. C., Kanyama-Phiri, G., Brown, K. M., & Lynch, J. P. (2015b). Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.). Field Crops Research, 171, 86–98.Google Scholar
  17. Christopher, J., Christopher, M., Jennings, R., Jones, S., Fletcher, S., Borrell, A., et al. (2013). QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theoretical and Applied Genetics, 126(6), 1563–1574.PubMedGoogle Scholar
  18. Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 442.PubMedPubMedCentralGoogle Scholar
  19. Dai, X., Wang, Y., Yang, A., & Zhang, W. H. (2012). OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiology, 159(1), 169–183.PubMedPubMedCentralGoogle Scholar
  20. de Dorlodot, S., Forster, B., Pages, L., Price, A., Tuberosa, R., & Draye, X. (2007). Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12(10), 474–481.PubMedGoogle Scholar
  21. Devaiah, B. N., Karthikeyan, A. S., & Raghothama, K. G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143(4), 1789–1801.PubMedPubMedCentralGoogle Scholar
  22. Dunbabin, V., Rengel, Z., & Diggle, A. (2004). Simulating form and function of root systems: Efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Functional Ecology, 18(2), 204–211.Google Scholar
  23. FAOSTAT. (2017). Statistics database of the Food and Agriculture Organization of the United Nations. Rome: FAOSTAT.Google Scholar
  24. Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64, 267–291.PubMedGoogle Scholar
  25. Flavel, R. J., Guppy, C. N., Tighe, M. K., Watt, M., & Young, I. M. (2014). Quantifying the response of wheat (Triticum aestivum L.) root system architecture to phosphorus in an Oxisol. Plant and Soil, 385(1–2), 303–310.Google Scholar
  26. Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H., Varshney, R. K., Colmer, T. D., et al. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2(8), 16112.PubMedGoogle Scholar
  27. Funayama-Noguchi, S., Noguchi, K., & Terashima, I. (2015). Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell and Environment, 38(3), 399–410.PubMedGoogle Scholar
  28. Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., et al. (2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 488(7412), 535–539.PubMedGoogle Scholar
  29. Gregory, P. J., Bengough, A. G., Grinev, D., Schmidt, S., Thomas, W. B. T., Wojciechowski, T., et al. (2009). Root phenomics of crops: Opportunities and challenges. Functional Plant Biology, 36(11), 922–929.Google Scholar
  30. Guo, W., Zhao, J., Li, X., Qin, L., Yan, X., & Liao, H. (2011). A soybean β—expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. The Plant Journal, 66(3), 541–552.PubMedGoogle Scholar
  31. Hamelin, C., Sempere, G., Jouffe, V., & Ruiz, M. (2013). TropGeneDB, the multi-tropical crop information system updated and extended. Nucleic Acids Research, 41(D1), D1172–D1175.PubMedGoogle Scholar
  32. Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J. P., et al. (2011). Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant and Soil, 348(1–2), 29–61.Google Scholar
  33. Jackson, R., Manwaring, J., & Caldwell, M. (1990). Rapid physiological adjustment of roots to localized soil enrichment. Nature, 344(6261), 58–60.PubMedGoogle Scholar
  34. Jaillais, Y., & Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nature Structural & Molecular Biology, 17(6), 642–645.Google Scholar
  35. Jaramillo, R. E., Nord, E. A., Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2013). Root cortical burden influences drought tolerance in maize. Annals of Botany, mct069.Google Scholar
  36. Jing, J., Rui, Y., Zhang, F., Rengel, Z., & Shen, J. (2010). Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research, 119(2), 355–364.Google Scholar
  37. Kleine-Vehn, J., Ding, Z., Jones, A. R., Tasaka, M., Morita, M. T., & Friml, J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences, 107(51), 22344–22349.Google Scholar
  38. Lambers, H., Finnegan, P. M., Laliberté, E., Pearse, S. J., Ryan, M. H., Shane, M. W., et al. (2011). Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: Are there lessons to be learned for future crops? Plant Physiology, 156(3), 1058–1066.PubMedPubMedCentralGoogle Scholar
  39. Lambers, H., Martinoia, E., & Renton, M. (2015). Plant adaptations to severely phosphorus-impoverished soils. Current Opinion in Plant Biology, 25, 23–31.PubMedGoogle Scholar
  40. Lei, M., Zhu, C., Liu, Y., Karthikeyan, A. S., Bressan, R. A., Raghothama, K. G., et al. (2011). Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytologist, 189(4), 1084–1095.PubMedGoogle Scholar
  41. Li, Z., Gao, Q., Liu, Y., He, C., Zhang, X., & Zhang, J. (2011). Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta, 233(6), 1129–1143.PubMedGoogle Scholar
  42. Li, H., Ma, Q., Li, H., Zhang, F., Rengel, Z., & Shen, J. (2014). Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil, 376(1–2), 151–163.Google Scholar
  43. Li, X., Zeng, R., & Liao, H. (2015). Improving crop nutrient efficiency through root architecture modifications. Journal of Integrative Plant Biology, 58(3), 193–202.PubMedGoogle Scholar
  44. Liao, H., Yan, X., Rubio, G., Beebe, S. E., Blair, M. W., & Lynch, J. P. (2004). Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Functional Plant Biology, 31(10), 959–970.Google Scholar
  45. Liu, Z., Gao, K., Shan, S., Gu, R., Wang, Z., Craft, E. J., et al. (2017). Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Frontiers in Plant Science, 8, 436.PubMedPubMedCentralGoogle Scholar
  46. Lynch, J. (1995). Root architecture and plant productivity. Plant Physiology, 109(1), 7–13.PubMedPubMedCentralGoogle Scholar
  47. Lynch, J. P. (2007). Turner review no. 14. Roots of the second green revolution. Australian Journal of Botany, 55(5), 493–512.Google Scholar
  48. Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals Botany, 112(2), 347–357.Google Scholar
  49. Lynch, J. P., & Beebe, S. E. (1995). Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortScience, 30, 1165–1171.Google Scholar
  50. Lynch, J. P., & Brown, K. M. (2001). Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 237(2), 225–237.Google Scholar
  51. Lynch, J. P., & Brown, K. M. (2012). New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society of London. Series B, 367(1595), 1598–1604.PubMedGoogle Scholar
  52. Lynch, J. P., Chimungu, J. G., & Brown, K. M. (2014). Root anatomical phenes associated with water acquisition from drying soil: Targets for crop improvement. Journal of Experimental Botany, 65(21), 6155–6166.PubMedGoogle Scholar
  53. Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges in the subsoil: Pathways to deeper rooted crops. Journal of Experimental Botany, 66(8), 2199–2210.PubMedPubMedCentralGoogle Scholar
  54. Lyzenga, W. J., & Stone, S. L. (2012). Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 63(2), 599–616.PubMedGoogle Scholar
  55. Ma, Q., Zhang, F., Rengel, Z., & Shen, J. (2013). Localized application of NH4+–N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil, 372(1–2), 65–80.Google Scholar
  56. Mace, E., Singh, V., Van Oosterom, E., Hammer, G., Hunt, C., & Jordan, D. (2012). QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 124(1), 97–109.PubMedGoogle Scholar
  57. Malamy, J. (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 28(1), 67–77.PubMedGoogle Scholar
  58. Manschadi, A. M., Hammer, G. L., & Christopher, J. T. (2008). Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant and Soil, 303(1–2), 115–129.Google Scholar
  59. Manschadi, A., Manske, G., & Vlek, P. (2013). Root architecture and resource acquisition—wheat as a model plant. Plant roots—the hidden half (4th ed.). London: CRC Press.Google Scholar
  60. Marchive, C., Yehudai-Resheff, S., Germain, A., Fei, Z., Jiang, X., Judkins, J., et al. (2009). Abnormal physiological and molecular mutant phenotypes link chloroplast polynucleotide phosphorylase to the phosphorus deprivation response in Arabidopsis. Plant Physiology, 151(2), 905–924.PubMedPubMedCentralGoogle Scholar
  61. McDonald, G., Taylor, J., Verbyla, A., & Kuchel, H. (2013). Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop and Pasture Science, 63(12), 1043–1065.Google Scholar
  62. Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16(4), 237.PubMedGoogle Scholar
  63. Miura, K., Lee, J., Gong, Q., Ma, S., Jin, J. B., Yoo, C. Y., et al. (2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiology, 155(2), 1000–1012.PubMedGoogle Scholar
  64. Miura, K., Rus, A., Sharkhuu, A., Yokoi, S., Karthikeyan, A. S., Raghothama, K. G., et al. (2005). The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7760–7765.PubMedPubMedCentralGoogle Scholar
  65. Naz, A. A., Arifuzzaman, M., Muzammil, S., Pillen, K., & Léon, J. (2014). Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genetics, 15(1), 107.PubMedPubMedCentralGoogle Scholar
  66. Neumann, G., & Martinoia, E. (2002). Cluster roots—an underground adaptation for survival in extreme environments. Trends in Plant Science, 7(4), 162–167.PubMedGoogle Scholar
  67. Niones, J. M., Inukai, Y., Suralta, R. R., & Yamauchi, A. (2015). QTL associated with lateral root plasticity in response to soil moisture fluctuation stress in rice. Plant and Soil, 391(1–2), 63–75.Google Scholar
  68. Pang, J., Bansal, R., Zhao, H., Bohuon, E., Lambers, H., Ryan, M. H., et al. (2018). The carboxylate‐releasing phosphorus–mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply. New Phytologist (in press).Google Scholar
  69. Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 14(3), 290–295.PubMedGoogle Scholar
  70. Placido, D. F., Campbell, M. T., Folsom, J. J., Cui, X., Kruger, G. R., Baenziger, P. S., et al. (2013). Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiology, 161(4), 1806–1819.PubMedPubMedCentralGoogle Scholar
  71. Salvi, S., Giuliani, S., Ricciolini, C., Carraro, N., Maccaferri, M., Presterl, T., et al. (2016). Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. Journal of Experimental Botany, 67, 1149–1159.PubMedPubMedCentralGoogle Scholar
  72. Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459(7250), 1071–1078.PubMedGoogle Scholar
  73. Shabala, S., Bose, J., Fuglsang, A. T., & Pottosin, I. (2015). On a quest for stress tolerance genes: Membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany, 67(4), 1015–1031.PubMedGoogle Scholar
  74. Shu, L. Z., Shen, J. B., Rengel, Z., Tang, C. X., & Zhang, F. S. (2007). Cluster root formation by Lupinus albus is modified by stratified application of phosphorus in a split-root system. Journal of Plant Nutrition, 30(2), 271–288.Google Scholar
  75. Smith, S., & De Smet, I. (2012). Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society of London. Series B, 367(1595), 1441–1452.PubMedGoogle Scholar
  76. Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. New York: Academic Press.Google Scholar
  77. Stevenson-Paulik, J., Bastidas, R. J., Chiou, S. T., Frye, R. A., & York, J. D. (2005). Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12612–12617.PubMedPubMedCentralGoogle Scholar
  78. Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., et al. (2007). Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics, 39(6), 792–796.PubMedGoogle Scholar
  79. Tang, C., Asseng, S., Diatloff, E., & Rengel, Z. (2003). Modelling yield losses of aluminium-resistant and aluminium-sensitive wheat due to subsurface soil acidity: Effects of rainfall, liming and nitrogen application. Plant and Soil, 254(2), 349–360.Google Scholar
  80. Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63(1), 25–31.PubMedGoogle Scholar
  81. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818–822.PubMedGoogle Scholar
  82. Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485–2494.PubMedGoogle Scholar
  83. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., et al. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102.PubMedGoogle Scholar
  84. Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157(3), 423–447.Google Scholar
  85. Varshney, R. K., Gaur, P. M., Chamarthi, S. K., Krishnamurthy, L., Tripathi, S., Kashiwagi, J., et al. (2013). Fast-track introgression of “for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. The Plant Genome, 6(3).Google Scholar
  86. Wada, Y., Kusano, H., Tsuge, T., & Aoyama, T. (2015). Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. The Plant Journal, 81(3), 426–437.PubMedGoogle Scholar
  87. Wang, H. Z., Yang, K. Z., Zou, J. J., Zhu, L. L., Xie, Z. D., Morita, M. T., et al. (2015). Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications, 6.Google Scholar
  88. Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V., Rebetzke, G. J., et al. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485–3498.PubMedGoogle Scholar
  89. Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33(4), 510–525.PubMedGoogle Scholar
  90. Wiśniewska, J., Xu, J., Seifertová, D., Brewer, P. B., Růžička, K., Blilou, I., et al. (2006). Polar PIN localization directs auxin flow in plants. Science, 312(5775), 883.PubMedGoogle Scholar
  91. Wu, P., & Wang, X. (2008). Role of OsPHR2 on phosphorus homoestasis and root hairs development in rice (Oryza sativa L.). Plant Signaling & Behavior, 3(9), 674–675.Google Scholar
  92. Yao, Z. F., Liang, C. Y., Zhang, Q., Chen, Z. J., Xiao, B. X., Tian, J., et al. (2014). SPX1 is an important component in the phosphorus signalling network of common bean regulating root growth and phosphorus homeostasis. Journal of Experimental Botany, 65(12), 3299–3310.PubMedPubMedCentralGoogle Scholar
  93. Yi, K., Menand, B., Bell, E., & Dolan, L. (2010). A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 42(3), 264–267.PubMedGoogle Scholar
  94. Zhan, A., Schneider, H., & Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 168(4), 1603–1615.PubMedPubMedCentralGoogle Scholar
  95. Zhang, Z., Zhang, X., Lin, Z., Wang, J., Xu, M., Lai, J., et al. (2018). The genetic architecture of nodal root number in maize. Plant Journal, 93, 1032–1044.PubMedGoogle Scholar
  96. Zhao, F. Y., Cai, F. X., Gao, H. J., Zhang, S. Y., Wang, K., Liu, T., et al. (2015). ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. Plant Growth Regulation, 75(2), 535–547.Google Scholar
  97. Zheng, Z., Zou, J., Li, H., Xue, S., Le, J., & Wang, Y. (2015). Dynamical and microrheological analysis of amyloplasts in the plant root gravity-sensing cells. Microgravity Science and Technology, 1–9.Google Scholar
  98. Zhu, J., Ingram, P. A., Benfey, P. N., & Elich, T. (2011). From lab to field, new approaches to phenotyping root system architecture. Current Opinions in Plant Biology, 14(3), 310–317.Google Scholar
  99. Zhu, J., Mickelson, S. M., Kaeppler, S. M., & Lynch, J. P. (2006). Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 113(1), 1–10.PubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  1. 1.The UWA Institute of Agriculture, and School of Earth and EnvironmentThe University of Western AustraliaPerthAustralia
  2. 2.Institute of Soil and Water Conservation, Northwest A&F University, and Chinese Academy of SciencesYanglingChina
  3. 3.CSIRO AgricultureWembleyAustralia

Personalised recommendations