Advertisement

Comparison between various concentrations of commercial and synthesized silver nanoparticles on biochemical parameters and growth of Stevia rebaudiana B.

  • Moazzameh Ramezani
  • Mahyar GeramiEmail author
  • Zohreh Majlesi
Original Article
  • 23 Downloads

Abstract

Nanoparticles are particles between 1 and 100 nm in size that has the ability to modify their physio-chemical properties compared to other material. In the present study, leaves of Stevia rebaudiana B. were used to extracts to synthesize Ag nanoparticles from AgNO3 (1 mM concentration) and then studied the effects of these commercial and synthesized Ag nanoparticles on biochemical (chlorophyll content, anthocyanin, flavonoid, carbohydrate, protein and DPPH) and growth characteristics of Stevia at different concentrations (0, 10, 20, 40 mM). UV–visible spectroscopy was used to identify the formation of Ag and analyzed synthesized Ag nanoparticles at 300–700 nm. Absorption maxima at 435 nm wavelength confirmed their synthesis. Examining synthesized AgNPs from S. rebaudiana extract using SEM micrograph showed a 25 nm dimension and spherical shape. Application of synthesized and commercial AgNPs at various concentrations on Stevia showed a dependency on concentrations that at 10 and 20 mM of AgNP, an increase in leaf area, shoot height and dry and fresh weight was recorded. At the biochemical level, applying 40 mM of synthesized AgNP resulted in increased chlorophyll content which led to accumulation of biomass besides soluble anthocyanin, flavonoid and carbohydrate and also total protein and DPPH, compared to plants treated with commercial AgNP. Moreover, the results demonstrated that increasing AgNP concentration enhances glycoside content in both treatments. Based on our findings, synthesized AgNP is more effective in accelerating the growth and improve the quality of natural product in Stevia plants than commercial AgNP.

Keywords

Green synthesis silver nanoparticle Plant extracts Silver nanoparticle Stevia rebaudiana 

Notes

Acknowledgements

Authors would like to thank Sana Institute for providing the opportunity to conduct this research. Sari, Iran.

Authors’ contributions

MR: design the experiment, ZM: perform the experiment, MG and MR: analysis the data, MR and MG and ZM: interpret the data and final revision of the manuscript. MR and MG and ZM: approved the final revision of manuscript.

Funding

This paper was supported by Sana Institute, Iran.

Compliance with ethical standards

Consent for publication

Not applicable.

Supplementary material

40502_2018_413_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 66 kb)

References

  1. Abdul Rahuman, A., Jayaseelan, C., Ramkumar, R., & Perumal, P. (2013). Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschu sesculentus and its antifungal activity. Industrial Crops and Products, 45, 423–429.CrossRefGoogle Scholar
  2. Albrecht, M. A. (2006). Green chemistry and the health implications of nanoparticles. Evans C Raston C. Green Chemistry, 8, 417–432.Google Scholar
  3. Arase, F., Arase, H., Nishitani, M., Egusa, N., Nishimoto, S., Sakurai, N., et al. (2012). AA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS ONE, 7, 43–49.CrossRefGoogle Scholar
  4. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidasein beta vulgaris. Plant Physiology, 24, 1–15.CrossRefGoogle Scholar
  5. Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebra fish models. Nanotechnology, 19, 255102.CrossRefGoogle Scholar
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  7. Briskin, D. P. (2000). Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiology, 124, 507–514.CrossRefGoogle Scholar
  8. Bujak, T., Nizioł-Łukaszewska, Z., Gaweł-Bęben, K., Seweryn, A., Kucharek, M., Rybczyńska-Tkaczyk, K., et al. (2015). The application of different Stevia rebaudiana leaf extracts in the “green synthesis” of AgNPs. Green Chemistry Letters and Reviews, 8, 3–4.CrossRefGoogle Scholar
  9. Comotto, M., Casazza, A. A., Aliakbarian, B., Caratto, V., Ferretti, M., & Perego, P. (2014). Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Scientific World Journal, 9, 324–333.Google Scholar
  10. Daayf, F., Ongena, M., Boulanger, R., Hadrami, I. E., & Belanger, R. R. (2000). Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology, 26, 1579–1593.CrossRefGoogle Scholar
  11. El-Temsah, Y. S., & Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27, 42–49.CrossRefGoogle Scholar
  12. Fuleki, T., & Francis, F. J. (1968). Quantitative methods for anthocyanins: Extraction and determination of total anthocyanin in cranberries. Journal of Food Science, 33, 72–77.CrossRefGoogle Scholar
  13. Garcia-Sanchez, S., Bernales, I., & Cristobal, S. (2015). Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. BMC Genomics, 16, 341–349.CrossRefGoogle Scholar
  14. Ghorbanpour, M., & Hadian, J. (2015). Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Saturejakhuzestanica grown in vitro. Carbon, 94, 749–759.CrossRefGoogle Scholar
  15. Govorov, A. O., & Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect. Nano Letters, 7(3), 620–625.CrossRefGoogle Scholar
  16. Huang, H., & Yang, X. (2004). Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research, 339, 2627–2631.CrossRefGoogle Scholar
  17. Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25, 443–447.CrossRefGoogle Scholar
  18. Kanipandian, N., Kannan, S., Ramesh, R., Subramanian, P., & Thirumurugan, R. (2014). Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Materials Research Bulletin, 49, 494–502.CrossRefGoogle Scholar
  19. Khan, M. N., Mobin, M., Abbas, Z. K., Almutairi, K. A., & Siddiqui, Z. H. (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 110, 194–209.CrossRefGoogle Scholar
  20. Kim, J. S., Kuk, E., & Yu, K. N. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95–101.CrossRefGoogle Scholar
  21. Kohan-Baghkheirati, E., & Geisler-Lee, J. (2015). Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials, 5, 436–467.CrossRefGoogle Scholar
  22. Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant Growth Metabolism, Process Biochemistry, 47, 651–658.CrossRefGoogle Scholar
  23. Kumar, A., & Nirmala, V. (2004). Gastric antiulcer activity of the leaves of Caesalpinia pulcherrima. Indian Journal of Pharmaceutical Sciences, 66(5), 676–678.Google Scholar
  24. Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2010). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Science of the Total Environment, 407, 5243.CrossRefGoogle Scholar
  25. Larcher, W. (2000). Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.). Plant Physiology, 96, 159–165.Google Scholar
  26. Li, W. R., Xie, X. B., Shi, Q. S., Duan, S. S., Ouyang, Y. S., & Chen, Y. B. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. BioMetals, 24, 135–141.CrossRefGoogle Scholar
  27. Lim, D., Roh, J. Y., Eom, H. J., Choi, J. Y., Hyun, J., & Choi, J. (2012). Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditi selegans. Environmental Toxicology and Chemistry, 31, 585–592.CrossRefGoogle Scholar
  28. Majlesi, Z., Ramezani, M., & Gerami, M. (2018). Investigation on some main glycosides content of Stevia rebaudian B. under different concentration of commercial and synthesized silver nanoparticles. PBR, 4(1), 1–10.Google Scholar
  29. Masarovicova, E., & Kralova, K. (2013). Metal nanoparticles and plants. Ecological Chemistry and Engineering S, 20, 9–22.CrossRefGoogle Scholar
  30. Mazumdar, H., & Ahmed, G. U. (2011). Synthesis of silver nanoparticles and its adverse effect germination. The International Journal of Advanced Biotechnology Research, 2, 404–413.Google Scholar
  31. Mirzajani, F., Askari, H., Hamzelou, S., Schober, Y., Rompp, A., & Ghassempour, A. (2014). Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicology and Environmental Safety, 108, 335–339.CrossRefGoogle Scholar
  32. Mohanpuria, P., Rana, N. K., & Yadav, S. K. J. (2008). Bio-synthesis of nanoparticles: Technological concepts and future applications. Nanoparticle Research, 10, 507–517.CrossRefGoogle Scholar
  33. Navarro, E., Baun, A., & Behra, R. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17, 372–386.CrossRefGoogle Scholar
  34. Padalia, H., Jadeja, R., & Chanda, S. (2016). Review: Screening of silver nanoparticle synthetic efficacy of some medicinal plants of Saurashtra region. In V. K. Gupta (Ed.), Natural products: Research review (Vol. 3, pp. 63–83). New Delhi: Daya Publishing House.Google Scholar
  35. Park, Y., Hong, Y., Weyers, A., Kim, Y., & Linhardt, R. (2011). Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IRT Nano Biotechnology, 5, 69–78.Google Scholar
  36. Perreault, F., Samadani, M., & Dewez, D. (2014). Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemnagibba L. Nanotoxicology, 8, 374–382.CrossRefGoogle Scholar
  37. Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 7, 760–767.CrossRefGoogle Scholar
  38. Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). ‘The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology, 26, 491–504.CrossRefGoogle Scholar
  39. Qi, M., Liu, Y., & Li, T. (2013). Nano-TiO2improves the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156, 323–328.CrossRefGoogle Scholar
  40. Qian, H., Peng, X., Han, X., Ren, J., Sun, L., & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Science, 25, 1947–1955.CrossRefGoogle Scholar
  41. Ramezani, M., Rahmani, F., & Dehestani, A. (2017). Study of physio-biochemical responses elicited by potassium phosphite in downy mildew-infected cucumber plants. Arch Phytopathology Plant Protect, 50, 540–554.CrossRefGoogle Scholar
  42. Rashmezad, M. A., Asgary, E. A., Tafvizi, F., & Mirzaie, A. (2015). Comparative study on cytotoxicity effect of biological and commercial synthesized nano silver on human gastric carcinoma and normal lung fibroblast cell lines. Tehran University Medical Journal, 72, 799–807.Google Scholar
  43. Raveendran, P., Fu, J., & Wallen, S. L. (2005). A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chemistry, 8, 34–38.CrossRefGoogle Scholar
  44. Rezvani, N., Sorooshzadeh, A., & Farhadi, N. (2012). Effect of nano-silver on growth of saffron in flooding stress. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 6, 11–16.Google Scholar
  45. Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3, 190–197.Google Scholar
  46. Savithramma, N., Ankanna, S., & Bhumi, G. (2012). Effect of nanoparticles on seed germination and seedling growth of Boswellia Ovalifoliolata—An endemic and endangered medicinal tree taxon. Nano Vision, 2, 61–68.Google Scholar
  47. Schluttenhofer, C., & Yuan, L. (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology, 167, 295–306.CrossRefGoogle Scholar
  48. Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air and Soil Pollution, 197, 143–148.CrossRefGoogle Scholar
  49. Sharma, P., Bhatt, D., Zaidi, M. G. H., Pardha Saradhi, P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225–2233.CrossRefGoogle Scholar
  50. Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthone on the auto oxidation of soybean in Cylcodextrin emulsion. Journal of Agricultural and Food Chem, 40, 945–948.CrossRefGoogle Scholar
  51. Siddiqui, M. H., Al-Whaibi, M. H., Faisal, M., & Al Sahli, A. A. (2014). Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbitapepo L. Environmental Toxicology and Chemistry, 33, 2429–2437.CrossRefGoogle Scholar
  52. Sivaram, L., & Mukundan, U. (2003). In vitro culture study on Stevia rebaudiana. In Vitro Cellular & Developmental Biology – Plant, 39, 520–523.CrossRefGoogle Scholar
  53. Song, J., & Kim, B. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32, 79–84.CrossRefGoogle Scholar
  54. Sosan, A., Svistunenko, D., Straltsova, D., Tsiurkina, K., Smolich, I., & Lawson, T. (2016). Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. The Plant Journal, 85, 245–257.CrossRefGoogle Scholar
  55. Suber, L., Sondi, I., Matijevi, E., & Goia, D. V. J. (2005). Preparation and the mechanisms of formation of silver particles of different morphologies in homogeneous solutions. Journal of Colloid Interface Science, 288, 489–495.CrossRefGoogle Scholar
  56. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2012). Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Current Nanoscience, 8(6), 902–908.CrossRefGoogle Scholar
  57. Syu, Y., Hung, J. H., & Chen, J. C. (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83, 57–64.CrossRefGoogle Scholar
  58. Tarafdar, J. C., & Raliya, R. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsiste tragonoloba L.). Agricultural Sciences, 2, 48–57.Google Scholar
  59. Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor-Cendejas, L. M., Villegas, J., CarretoMontoya, L., & Borjas-García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nano agriculture. Applied Nanoscience, 4, 577–591.CrossRefGoogle Scholar
  60. Vannini, C., Vannini, G., Domingo, E., Onelli, B., Prinsi, M., Marsoni, L., et al. (2013). Bracale Morphological and proteomic responses of Eruca sativa exposed to silver Nanoparticles or silver nitrate. PLoS ONE, 8, e68752.CrossRefGoogle Scholar
  61. Vecerova, K., Vecera, Z., Docekal, B., Oravec, M., Pompeiano, A., & Tríska, J. (2016). Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environmental Pollution, 218, 207–218.CrossRefGoogle Scholar
  62. Xu, S., Lou, T., Zhao, N., Gao, Y., Dong, L., Jiang, D., et al. (2011). Presoaking with hemin improves salinity tolerance during wheat seed germination. Acta Physiologiae Plantarum, 33, 1173–1183.CrossRefGoogle Scholar
  63. Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57, 508–514.CrossRefGoogle Scholar
  64. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Moazzameh Ramezani
    • 1
  • Mahyar Gerami
    • 2
    Email author
  • Zohreh Majlesi
    • 3
  1. 1.Department of BiologyUrmia UniversityUrmiaIran
  2. 2.Faculty of Sana Institute of Higher EducationSariIran
  3. 3.Sana Institute of Higher EducationSariIran

Personalised recommendations