Advertisement

Efficient chloroplast transformation in Scoparia dulcis L. using pFaadAII vector

  • Muralikrishna Narra
  • Srinivas Kota
  • Raghu Ellendula
  • Kiranmayee Kasula
  • Bharath Kumar Kalva
  • Abbagani Sadanandam
Original Article

Abstract

The plastid transformation is used for high level expression of certain metabolically and industrially important recombinant proteins in plants. The vector, pFaadAII, a tobacco based vector system, harbouring a chimeric gene consisting of aadA coding region from Escherichia coli with 5′ 16S rDNA promoter and 3′ untranslated transcript region (UTR) of chlamydomonas rbcL gene, located in between the intergenic regions of rp132 and trnL genes. This vector used for transformation of plastids targets the foreign sequences to the small single-copy region of the plastome. Biolistic mode of approach for chloroplast transformation in Scoparia dulcis L., was achieved by bombarding the leaf explants and spectinomycin based selection system was used for regeneration of transformed plants. Transplastomic lines have been successfully established with overall efficiency of two transgenic lines for twenty-five bombarded explants. Integration of aadA in selection based regenerants was characterized by PCR and protein accumulation analysis along with seedlings experiment obtained from selfing. The chloroplast transformation developed in this plant system will provide scope for research in plastid based metabolic engineering pathways.

Keywords

Chloroplast transformation Heterologous vector Transplastomic plants aadA 

Notes

Acknowledgements

The authors would like to thank H. U. Koop, Germany, for useful suggestions and providing pFaadAII plastid vector used in this study. We greatly acknowledge the financial assistance provided by the Department of Science and Technology-New Delhi (SR/SO/BB011/2010, SERB), Department of Science and Technology-INSPIRE (DST/INSPIRE Fellowship/2011/426). AS is grateful to UGC for BSR-Faculty Fellowship. The authors are also thankful to UGC, New Delhi for financial support under SAP-DRS phase-II to the Department of Biotechnology, Kakatiya University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aileni, M., Abbagani, S., & Zhang, P. (2011). Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: Plant regeneration via shoot organogenesis. Plant Biotechnology Reports, 5, 147–156.CrossRefGoogle Scholar
  2. Aileni, M., Rao Kokkirala, V., Reddy Kota, S., Umate, P., & Abbagani, S. (2008). Efficient in vitro regeneration from mature leaf explants of Scoparia dulcis L., an ethnomedicinal. Journal of Herbs Spices & Medicinal Plants, 14, 200–207.CrossRefGoogle Scholar
  3. Bendich, A. J. (1987). Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 6, 279–282.CrossRefGoogle Scholar
  4. Cheng, L., Li, H. P., Qu, B., Huang, T., Tu, J. X., Fu, T. D., et al. (2010). Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Reports, 29, 371–381.CrossRefGoogle Scholar
  5. Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 20, 581–586.CrossRefGoogle Scholar
  6. Daniell, H., Datta, R., Varma, S., Gray, S., & Lee, S. B. (1998). Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology, 16, 345–348.CrossRefGoogle Scholar
  7. Daniell, H., & Dhingra, A. (2002). Multigene engineering: Dawn of an exciting new era in biotechnology. Current Opinion in Biotechnology, 13, 136–141.CrossRefGoogle Scholar
  8. DeGray, G., Rajasekaran, K., Smith, F., Sanford, J., & Daniell, H. (2001). Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiology, 127, 852–862.CrossRefGoogle Scholar
  9. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin, 19, 11–15.Google Scholar
  10. Dufourmantel, N., Tissot, G., Goutorbe, F., Garcon, F., Muhr, C., Jansens, S., et al. (2005). Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Molecular Biology, 58, 659–668.CrossRefGoogle Scholar
  11. Eibl, C., Zou, Z., Beck, A., Kim, M., Mullet, J., & Koop, H. U. (1999). In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: Tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. The Plant Journal, 19, 333–345.CrossRefGoogle Scholar
  12. Golds, T., Maliga, P., & Koop, H. U. (1993). Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Nature Biotechnology, 11, 95–97.CrossRefGoogle Scholar
  13. Goldschmidt-Clermont, M. (1991). Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker for site-directed transformation of chlamydomonas. Nucleic Acids Research, 19, 4083–4089.CrossRefGoogle Scholar
  14. Iamtham, S., & Day, A. (2000). Removal of antibiotic resistance genes from transgenic tobacco plastids. Nature Biotechnology, 18, 1172–1176.CrossRefGoogle Scholar
  15. Kanamoto, H., Yamashita, A., Asao, H., Okumura, S., Takase, H., Hattori, M., et al. (2006). Efficient and stable transformation of Lactuca sativa L. cv. cisco (lettuce) plastids. Transgenic Research, 15, 205–217.CrossRefGoogle Scholar
  16. Koop, H. U., Steinmiiller, K., Wagner, H., Christine, R., Eibl, C., & Sacher, L. (1996). Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta, 199, 193–201.CrossRefGoogle Scholar
  17. Kumar, S., Dhingra, A., & Daniell, H. (2004). Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology, 56, 203–216.CrossRefGoogle Scholar
  18. Lee, S. M., Kang, K., Chung, H., Yoo, S. H., Xu, X. M., Lee, S. B., et al. (2006). Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecular Cells, 21, 401–410.Google Scholar
  19. Maliga, P. (2003). Progress towards commercialization of plastid transformation technology. Trends in Biotechnology, 21, 20–28.CrossRefGoogle Scholar
  20. Mishra, M. R., Behera, R. K., Jha, S., Panda, A. K., Mishra, A., Pradhan, D. K., et al. (2011). A brief review on phytoconstituents and ethnopharmacology of Scoparia dulcis L. (Scrophulariaceae). International Journal of Phytomedicine, 3, 422–438.Google Scholar
  21. Muralikrishna, N., Srinivas, K., BharathKumar, K., & Sadanandam, A. (2016). Stable plastid transformation in Scoparia dulcis L. Physiology and Molecular Biology of Plants, 22, 575–581.CrossRefGoogle Scholar
  22. Muralikrishna, N., Srinivas, K., Yashodhara, V., Raghu, E., Rao, V. A., & Sadanandam, A. (2018). Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech, 8, 140.Google Scholar
  23. Murashige, T., & Skoog, F. A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  24. Nugent, G. D., Coyne, S., Nguyen, T. T., Kavanaghb, T. A., & Dix, P. J. (2006). Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Science, 170, 135–142.CrossRefGoogle Scholar
  25. Prentki, P., & Krisch, H. M. (1984). In vitro insertional mutangenesis with a selectable DNA fragment. Gene, 29, 303–313.CrossRefGoogle Scholar
  26. Ruf, S., Hermann, M., Berger, I. J., Carrer, H., & Bock, R. (2001). Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology, 19, 870–875.CrossRefGoogle Scholar
  27. Ruhlman, T., Verma, D., Samson, N., & Daniell, H. (2010). The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiology, 152, 2088–2104.CrossRefGoogle Scholar
  28. Sidorov, V. A., Kasten, D., Pang, S. Z., Hajdukiewicz, P. T., Staub, J. M., & Nehra, N. S. (1999). Stable plastid transformation in potato: Use of green fluorescent protein as a plastid marker. Plant Journal, 19, 209–216.CrossRefGoogle Scholar
  29. Sikdar, S. R., Serino, G., Chaudhuri, S., & Maliga, P. (1998). Plastid transformation in Arabidopsis thaliana. Plant Cell Reports, 18, 20–24.CrossRefGoogle Scholar
  30. Singh, A. K., Verma, S. S., & Bansal, K. C. (2010). Plastid transformation in eggplant (Solanum melongena L.). Transgenic Research, 19, 113–119.CrossRefGoogle Scholar
  31. Skarjinskaia, M., Svab, Z., & Maliga, P. (2003). Plastid transformation in Lesquerella Fendleri, an oilseed brassicacea. Transgenic Research, 12, 115–122.CrossRefGoogle Scholar
  32. Srinivas, K., Muralikrishna, N., BharathKumar, K., Raghu, E., Mahender, A., Kiranmayee, K., et al. (2016). Biolistic transformation of Scoparia dulcis L. Physiology and Molecular Biology of Plants, 22, 61–68.CrossRefGoogle Scholar
  33. Svab, Z., Hajdukiewicz, P., & Maliga, P. (1990). Stable transformation of plastids in higher plants. Proceedings of the Nattional Academy of Sciences of the United States of America, 87, 8526–8530.CrossRefGoogle Scholar
  34. Svab, Z., & Maliga, P. (1993). High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proceedings of the Nattional Academy of Sciences of the United States of America, 90, 913–917.CrossRefGoogle Scholar
  35. Wakasugi, T., Tsudzuki, T., & Sugiura, M. (2001). The genomics of land plant plastids: gene content and alteration of genomic information by RNA editing. Photosynthesis Research, 70, 107–118.CrossRefGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2018

Authors and Affiliations

  • Muralikrishna Narra
    • 1
  • Srinivas Kota
    • 1
  • Raghu Ellendula
    • 1
  • Kiranmayee Kasula
    • 2
  • Bharath Kumar Kalva
    • 1
  • Abbagani Sadanandam
    • 1
  1. 1.Department of BiotechnologyKakatiya UniversityWarangalIndia
  2. 2.Department of BiotechnologyTelangana UniversityNizamabadIndia

Personalised recommendations