Indian Journal of Plant Physiology

, Volume 23, Issue 1, pp 57–64 | Cite as

Phenotyping and microsatellite marker analysis of HD 2851 (salt sensitive) × Kharchia 65 (salt tolerant) F2 population for salinity tolerance

  • Satender Yadav
  • Shikha Yashveer
  • Y. P. S. Solanki
  • Vikram Singh
Original Article
  • 25 Downloads

Abstract

Utilizing the available molecular markers for Nax1 and Nax2, the present study was aimed at validating these markers for salt tolerance in Kharchia 65 and then to introgress these loci from Kharchia 65 to HD 2851. F2 lines (grown under saline conditions) containing the Nax loci were selected using a combination of morpho-physiological information and linked molecular markers. Net house evaluation data showed enormous variation among Kharchia 65 × HD 2851 F2 plants including plant height, no. of tillers per plant, ear length, no. of grains/ear, no. of spikelets/spike, grain yield per plant, 1000 grain weight, biological yield/plant and harvest index. Out of 85SSR primers used, 22 SSRs showed polymorphism between Kharchia 65 and HD 2851 parental genotypes. From the net house evaluation data 100 F2 plants were selected. These plants were checked for the presence of Nax loci. Nine plants showed the presence of both the Nax loci. An assessment of distribution of Kharchia 65 and HD 2851 specific alleles for 22 polymorphic SSRs in 9 F2 plants showed that on an average, 71% alleles were from Kharchia 65 and 87.5% alleles were from HD2851.

Keywords

Nax1 and NaxSalinity SSRs Polymorphism Wheat 

References

  1. Amor, N. B., Hamed, K. B., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of perennial halophyte Crithmum maritimum to salinity. Plant Science, 4, 889–899.CrossRefGoogle Scholar
  2. Anonymous. (2015). Progress report of the All India Co-ordinated Wheat and Barley improvement project 2014–2015 (Vol. 01). Karnal: Indian Institute of Wheat and Barley Research.Google Scholar
  3. Ashraf, M. (2002). Genetic variation for salinity tolerance in spring wheat. Heredity, 120, 99–104.CrossRefGoogle Scholar
  4. Badridze, G., Weidner, A., Asch, F., & Borner, A. (2009). Variation in salt tolerance within a Georgian wheat germplasm collection. Genetic Resources and Crop Evolution, 56, 1125–1130.CrossRefGoogle Scholar
  5. Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R. A., Lagudah, E. S., Dennis, E. S., et al. (2007). HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology, 143, 1918–1928.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chatrath, R. B., Mishra, G., Singh, S. K., & Joshi, A. K. (2007). Challenges to wheat production in South Asia. Euphytica, 157, 447–456.CrossRefGoogle Scholar
  7. CSSRI: Salt affected soils. Available from: http://www.cssri.org/.
  8. Dvorak, J., Noaman, M. M., & Gorham, G. (1994). Enhancement of the salt tolerance of Triticum turgidum L. by the Knal locus transferred from the Triticum aestivum L. chromosome 4D by homologous recombination. Theoretical and Applied Genetics, 87, 872–877.CrossRefPubMedGoogle Scholar
  9. FAO. (2010). Global network on integrated soil management for sustainable use of salt affected soils. Rome Italy. FAO Land and plant nutrition management service. Available from: http://www.fao.org/ag/agl/agll/spush/.
  10. FAO. (2012). Available from: http://faostat.fao.org/.
  11. Gurmani, A. R., Khan, S. U., Mabood, F., Ahmed, Z., Butt, S. J., Din, J. U., et al. (2014). Screening and selection of synthetic hexaploid wheat germplasm for salinity tolerance based on physiological and biochemical characters. International Journal of Agriculture and Biology, 16(4), 681–690.Google Scholar
  12. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agricultural Experiment Station, 347(2), 23–32.Google Scholar
  13. James, R. A., Blake, C., Zwart, A. B., Hare, R. A., Rathjen, A. J., & Munns, R. (2012). Impact of ancestral wheat sodium exclusion genes Nax1 and Nax2 on grain yield of durum wheat on saline soils. Functional Plant Biology, 39, 609–618.CrossRefGoogle Scholar
  14. James, R. A., Rivelli, A. R., Munns, R., & Caemmerer, S. (2006). Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 29, 1393–1403.CrossRefGoogle Scholar
  15. Lindsay, M. P., Lagudah, E. S., Hare, R. A., & Munns, R. (2004). A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology, 31, 1105–1114.CrossRefGoogle Scholar
  16. Ma, L., Zhou, E., Huo, N., Zhou, R., Wang, G., & Jia, J. (2007). Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica, 153, 109–117.CrossRefGoogle Scholar
  17. Meneguzzo, S., Navari-Izzo, F., & Izzo, R. (2000). NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. Journal of Plant Physiology, 156, 711–716.CrossRefGoogle Scholar
  18. Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.CrossRefPubMedGoogle Scholar
  19. Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., et al. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30, 360–364.CrossRefPubMedGoogle Scholar
  20. Munns, R., Richard, A. J., & Lauchli, A. (2006). Approaches to increase the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025–1043.CrossRefPubMedGoogle Scholar
  21. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.CrossRefPubMedGoogle Scholar
  22. Peng, J. H., Sun, D. F., & Nevo, E. (2011). Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication. Australian Journal of Crop Science, 5, 1127–1143.Google Scholar
  23. Pingali, P. L., & Rajaram, S. (1998). Technical opportunities for sustaining wheat productivity growth toward 2020. 2020 vision briefs 51, International Food Policy Research Institute (IFPRI).Google Scholar
  24. Randall, P. J., Delhaize, E., Richards, R. A., & Munns, R. (1993). Genetic aspects of plant mineral nutrition. In R. A. Richards (Ed.), Chapter 14, Increasing salinity tolerance of grain crops: Is it worthwhile? (pp. 117–126).Google Scholar
  25. Royo, A., & Aragues, R. (1999). Salinity yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant and Soil, 209, 9–20.CrossRefGoogle Scholar
  26. Yamaguchi, T., & Blumwold, E. (2005). Developing salt tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10, 615–620.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Society for Plant Physiology 2017

Authors and Affiliations

  • Satender Yadav
    • 1
  • Shikha Yashveer
    • 2
  • Y. P. S. Solanki
    • 1
  • Vikram Singh
    • 1
  1. 1.Department of Genetics and Plant Breeding, COACCS HAUHisarIndia
  2. 2.Department of Molecular Biology, Biotechnology and Bioinformatics, COBSHCCS HAUHisarIndia

Personalised recommendations