Indian Journal of Plant Physiology

, Volume 22, Issue 3, pp 332–338 | Cite as

Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers

  • R. B. Singh
  • Balwant Singh
  • R. K. Singh
Original Article


Genetic variations were evaluated among the twenty-five sugarcane genotypes employing functional molecular (TRAP) markers. Genetic diversity exists among sugarcane germplasm was exploited to identify promising genotypes bearing enviable agronomic traits (sucrose content and multiple disease resistance). Genetically diversified genotype could be exploited as proven parents in sugarcane hybridization programs to establish a promising cross. TRAP markers amplify functional regions of the genome, a valuable information in relation to the variations within coding/functional regions of the plant genome. Genetic similarity (GS) among all the twenty-five genotypes was calculated in a wide range as 41–99% with an average of 70%. Thirteen unique DNA bands of Saccharum spontaneum and thirteen specific DNA bands for cultivar were produced by the used markers. Poly component analysis showed that 52.48% of the cumulative variation was explained by the all the genotypes with respect to the sucrose metabolism related genes. Sugarcane genotypes viz; CoS 96269 and CoS 8436 (GS 97.0%) and BO 91 and CoSe 95422 (GS 96%) showed highest genetic similarity. These genotypes may be recommended as proven parents for making enviable crosses in sugarcane breeding programs. Moreover, functional TRAP markers would be efficiently useful in genetic studies for sugarcane genetic improvement.


Sugarcane genetics Genetic diversity Proven parents Poly component analysis (PCA) Genetic similarity and TRAP markers 



Authors are thankful to Ministry of Sugar and Cane Development, Govt. of Uttar Pradesh, India, and Director, Sugarcane Research Institute (U.P. Council of Sugarcane Research) to providing financial aid for conducting the research work.

Supplementary material

40502_2017_314_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
40502_2017_314_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 kb)


  1. Aitken, K., Li, L., Wang, C., Qing, Y. H., & Jackson, P. (2007). Characterization of intergeneric cultivars of Erianthus rockii and Saccharum using molecular markers. Genetic Resources and Crop Evolution, 54(7), 1395–1405.CrossRefGoogle Scholar
  2. Alwala, S., Kimbeng, C. A., Veremis, J. C., & Gravois, K. A. (2008). Linkage mapping and genome analysis in Saccharum interspecies cross using AFLP, SRAP and TRAP markers. Euphytica, 164(1), 37–51.CrossRefGoogle Scholar
  3. Alwala, S., Suman, A., Arro, J. A., Vermis, J. C., & Kimbeng, C. A. (2006). Target region amplification polymorphism (TRAP) for accessing Genetic diversity in sugarcane germplasm collections. Crop Science, 46(1), 448–455.CrossRefGoogle Scholar
  4. Arceneaux, G. (1967). Cultivated sugarcanes of the world and their botanical derivation. Proceedings International Society of Sugarcane Technologists, 12, 844–854.Google Scholar
  5. Besse, P., McIntyre, C. L., & Berding, N. (1997). Characterisation of Erianthus sect. Ripidium and Saccharum germplasm (AndropogoneaeSaccharinae) using RFLP markers. Euphytica, 93(3), 283–292.CrossRefGoogle Scholar
  6. Brown, S., Schnell, R. J., Power, E. J., Douglas, S. L., & Kuhn, D. N. (2007). Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genetic Resource and Crop Evolution, 54(3), 627–648.CrossRefGoogle Scholar
  7. Creste, S., Accoroni, K. A., Pinto, G., Vencosvskv, L. R., Gimenes, R., Xavier, M. A., et al. (2010). Genetic variability among sugarcane genotypes based on polymorphism in sucrose metabolism and drought tolerance genes. Eupytica, 172(3), 435–446.CrossRefGoogle Scholar
  8. Daniels, J., & Roach, B. (1987). Taxonomy and evolution. In D. J. Heinz (Ed.), Sugarcane improvement through breeding (pp. 7–84). Amsterdam: Elsevier Press.CrossRefGoogle Scholar
  9. Daniels, J., Smith, P., Paton, N., & Williams, C. A. (1975). The origin of the genus Saccharum. Sugarcane Breeding Newsletters, 36, 24–39.Google Scholar
  10. D’Hont, A., Grivet, L., Feldmann, P., Rao, P. S., Berding, N., & Glazmann, J. C. (1996). Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics, 250(4), 405–413.PubMedGoogle Scholar
  11. Dunckelman, P. H., & Breaux, R. D. (1969). Agronomic characteristics of Saccharum spontaneum in culture in Houma, Louisiana. International Sugar Journal, 71, 333–334.Google Scholar
  12. Hampl, V., Pavlicek, A., & Flegr, J. (2001). Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with a freeware program FreeTree: Application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology, 51, 731–735.CrossRefPubMedGoogle Scholar
  13. Hemaprabha, G., Krishna, A., Vincy, J., Priji, P., Simon, S., & Govindaraj, P. (2010). DNA fingerprinting for identification and protection of elite sugarcane (Saccharum spp.) varieties. Electronic Journal of Plant Breeding, 1(4), 420–425.Google Scholar
  14. Hoisington, D. (1992). Laboratory protocol. Mexico, DF: CIMMYT applied molecular genetics laboratory.Google Scholar
  15. Hu, J. G., & Vick, B. A. (2003). Target region amplification, polymorphism. A novel marker technique for plant genotypes. Plant Molecular Biolology Reporter, 21(3), 289–294.CrossRefGoogle Scholar
  16. Khan, I., Bibi, A., Yasmeen, S., Seema, N., Khatri, A., Siddiqui, M. A., et al. (2011). Identification of elite sugarcane clones through TRAP. Pakistan Journal of Botany, 43(1), 261–269.Google Scholar
  17. Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103(1), 455–546.CrossRefGoogle Scholar
  18. Lima, M. L. A., Garcia, A. A. F., Oliveira, K. M., Matsuoka, S., Arizono, H., De Souza, C. L., et al. (2002). Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theoretical and Applied Genetics, 104(1), 30–38.CrossRefPubMedGoogle Scholar
  19. Lu, Y. H., D’Hont, A., Walker, D. I. T., Feldman, P., Rao, P. S., & Glaszmann, J. C. (1994). Relationships among ancestral species of sugarcane revealed by RFLP using single-copy maize nuclear probes. Euphytica, 78(1–2), 7–18.Google Scholar
  20. Nair, N. V., Sreenivasan, T. V., & Mohan, M. (1999). Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genetic Resources and Crop Evolution, 46(1), 73–79.CrossRefGoogle Scholar
  21. Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in Biosciences, 12(4), 357–358.Google Scholar
  22. Price, S. (1963). Cytogenetics of modern sugar canes. Economic Botany, 17(2), 97–106.CrossRefGoogle Scholar
  23. Roach, B. T. (1972). Nobilization of sugarcane. Proceedings of the International Society of Sugar Cane Technologists, 14, 206–216.Google Scholar
  24. Roach, B. T., & Daniels, J. (1987). A review of the origin and improvement of sugarcane. In: Proceedings of Copersugar International Sugarcane Workshop, Brazil, pp. 1–32.Google Scholar
  25. Selvi, A., Mukunthan, N., Shanthi, R. M., Govindaraj, P., Singaravelu, B., & Prabu, T. K. (2008). Assessment of genetic relationships and marker identification in sugarcane cultivars with different levels of top borer resistance. Sugar Technology, 10(1), 53–59.CrossRefGoogle Scholar
  26. Selvi, A., Nair, N. V., Balasundaram, N., & Mohapatra, T. (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome, 46(1), 394–403.CrossRefPubMedGoogle Scholar
  27. Singh, R. K., Singh, R. B., Singh, S. P., Mishra, N., Rastogi, J., Sharma, M. L., et al. (2013). Genetic diversity among the Saccharum spontaneum clones and commercial hybrids through SSR markers. Sugar Technology, 15(2), 109–115.CrossRefGoogle Scholar
  28. Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2011). Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 182(1), 335–354.CrossRefGoogle Scholar
  29. Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2012). Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane cultivars using c-DNA and unigene derived markers. World Journal of Microbiology & Biotechnology, 28(4), 1669–1679.CrossRefGoogle Scholar
  30. Singh, R. B., Srivastava, S., Verma, A. K., Singh, B., & Singh, R. K. (2014). Importance and progresses of microsatellite markers in Sugarcane (Saccharum spp. hybrids). Indian Journal of Sugarcane Technology, 29(1), 1–12.Google Scholar
  31. Sobral, B. W. S., Braga, D. P. V., Lahood, E. S., & Keim, P. (1994). Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinaea. Griseb. subtribe of the Andropogonaea Dumort tribe. Theoritical and Appllied Genetics, 87(1), 843–853.Google Scholar
  32. Stevenson, G. (1960). Sugarcane varieties in Barbados: An historical review. In: Bulletin. B.W.I. Central Sugar Cane Breeding Station, Barbados, vol. 39: p. 29.Google Scholar
  33. Suman, A., Ali, K., Arro, J., Parco, A. S., Kimbeng, C. A., & Baisakh, N. (2011). Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes. BioEnergy Research, 5(1), 197–205.CrossRefGoogle Scholar
  34. Suman, A., Kimbeng, C. A., Edme, S. J., & Vermis, J. (2008). Sequence related amplified polymorphism (SRAP) markers for accessing genetic relationship and diversity in sugarcane germplasm collections. Plant Genetic Resources, 6(3), 222–231.CrossRefGoogle Scholar
  35. Tai, P. Y. P., & Miller, J. D. (1988). Phenotypic characteristics of the hybrids of sugarcane related grasses. Journal of the American Society of Sugar Cane Technologists, 8, 5–11.Google Scholar
  36. Ude, G., Pillay, M., Ogundiwin, E., & Tenkouano, A. (2003). Genetic diversiy in an African plantain core collection using AFLP and RAPD markers. Theoritical and Appllied Genetics, 107(2), 248–255.CrossRefGoogle Scholar
  37. Vuylsteke, M., Mank, R., Brugmans, B., Stam, P., & Kuiper, M. (2000). Further characterization of AFLP data as a tool in genetic diversity assessments among maize (Zea mays L.) inbred lines. Molecular Breeding, 6(3), 265–276.CrossRefGoogle Scholar
  38. Weir, B. S., & Sunderland, M. A. (1990). Genetic data analysis methods for discrete population genetic data. Science, xiv, 377.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyPunjab Technical University (PTU)KapurthalaIndia
  2. 2.Swami Satyanand College of Management and TechnologyAmritsarIndia
  3. 3.Sugarcane Research Institute(U.P. Council of Sugarcane Research)ShahjahanpurIndia
  4. 4.Quality and Basic Sciences LabICAR-Indian Institute of Wheat and Barley Research (IIWBR)Agrasain Marg, KarnalIndia

Personalised recommendations