Indian Journal of Plant Physiology

, Volume 22, Issue 3, pp 358–364 | Cite as

Analysis of Arg-X proteolytic activity in the supramolecular structures of cell nuclei influenced by inhibitor deacetylation of proteins during the germination of wheat

  • Gulnar Vafina
  • Ruslan IvanovEmail author
  • Evilina Ivanova
Short Communication


In higher eukaryotes, histone tails and globular domains are subjected to a variety of posttranslational modifications including regulatory proteolysis to create different chromatin structures necessary for the functioning of DNA. The aim of the present work was to detect the regions of activity of Arg-X proteolysis in complexes of histone and non-histone proteins as a potential mechanism affecting the large-scale reorganization of the chromatin. This chromatin reorganization occurs during the germination of wheat germ under conditions of highly acetylated proteins in the cell nuclei. For soaking the seeds and the induction of germination, respectively, distilled water was used as the control, and 0.004 mM sodium butyrate as the test. Cell nuclei were isolated from germs, cleared, and then the nucleoplasm, chromatin and the nuclear matrix were extracted by increasing the ionic strength of the solution. From isolated supra-molecular structures, non-histone proteins were separated from histones using ion exchange chromatography. The Arg-X proteolytic activity was assessed by cleavage of Arg-X bonds in the arginine-enriched protein protamine in all nuclear fractions. It is possible that decreasing in histone turnover due to the antiproliferative effect of the deacetylase inhibitor (sodium butyrate) is due to decreasing of proteolytic activity in histone and non-histone proteins associated with chromatin, suggesting the possible role of histone proteinases in histone metabolism. These results also enabled us to detect the regions of activity of Arg-X proteolysis in the non-histone and histone blocks. It also provided information on the specific tissues in which proteolysis activity is observed during wheat germ germination under normal conditions, as well as under conditions of highly acetylated proteins in the cell nuclei. These results provide an example of the proteinase network formed in the supra-molecular structures of cell nuclei.


Arg-X proteolysis Inhibitor deacetylation Sodium butyrate Histones Cell nuclei 


  1. Akberdin, I. R., Kazantsev, F. V., Ozonov, E. A., Mironova, V. V., Omel’yanchuk, N. A., Gainova, I. A., et al. (2011). Mathematical modeling of the shoot meristem at various hierarchical levels. Zhivaja nauka (in Russian).Google Scholar
  2. Azad, G. K., & Tomar, R. S. (2014). Proteolytic clipping of histone tails: The emerging role of histone proteases in regulation of various biological processes. Molecular Biology Reports, 41(5), 2717–2730. doi: 10.1007/s11033-014-3181-y.CrossRefPubMedGoogle Scholar
  3. Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21, 381–395. doi: 10.1038/cr.2011.22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barnett, M. P. G., Bassett, S. A., & Bermingham, E. N. (2013). Epigenetics—What role could this play in functional foods and personalized nutrition? In L. R. Ferguson (Ed.), Nutrigenomics and nutrigenetics in functional foods and personalized nutrition (pp. 243–267). Florence, KY: CRC Press. ISBN 9781439876800.CrossRefGoogle Scholar
  5. Bohm, L., Briand, G., Sautiere, P., & Crane-Robinson, C. (1981). Proteolytic digestion studies of chromatin core-histone structure identification of the limit peptides of histones H3 and H4. European Journal of Biochemistry, 119, 67–74. doi: 10.1111/j.1432-1033.1981.tb05577.x.CrossRefPubMedGoogle Scholar
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.CrossRefPubMedGoogle Scholar
  7. Carter, D. B., & Chae, C.-B. (1976). Chromatin-bound protease: Degradation of chromosomal proteins under chromatin dissociation conditions. Biochemistry, 12(1), 180–185.CrossRefGoogle Scholar
  8. Danovich, K. N., Sobolev, A. M., Zhdanova, L. P., Illy, I. E., Nikolaev, M. G., Askochenskaya, N. A., et al. (1982). Physiology of seeds. Moscow: Nauka. (in Russian).Google Scholar
  9. Dhaenens, M., Glibert, P., Meert, P., Vossaert, L., & Deforce, D. (2014). Histone proteolysis: A proposal for categorization into “clipping” and “degradation”. BioEssays, 37(1), 70–79. doi: 10.1002/bies.201400118.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Elia, M. C., & Moudrianakis, E. N. (1988). Regulation of H2A-specific proteolysis by the histone H3: H4 tetramer. The Journal of Biological Chemistry, 263, 9958–9964.PubMedGoogle Scholar
  11. Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10, 32–42. doi: 10.1038/nrg2485.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ho, E., & Dashwood, R. H. (2010). Dietary manipulation of histone structure and function. World Review of Nutrition and Dietetics, 101, 95–102. doi: 10.1146/annurev.nutr.28.061807.155354.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hübner, M. R., & Spector, D. L. (2010). Chromatin dynamics. Annual Review of Biophysics, 39, 471–489. doi: 10.1146/annurev.biophys.093008.131348.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ivanov, V. B., Dobrochaev, A. E., & Baskin, T. I. (2002). What the distribution of cell lengths in the root meristem does and does not reveal about cell division. Journal of Plant Growth Regulation, 21, 60–67. doi: 10.1007/s003440010051.CrossRefPubMedGoogle Scholar
  15. Ivanova, E. A. & Vafina, G. H. (1991). Method of isolation of plant cell nucleus. RF Patent, 1701747 (in Russian).Google Scholar
  16. Ivanova, E. A. & Vafina, G. H. (1992). Method of obtaining of nuclear fractions possessing proteinase and inhibition activity. RF Patent, 1733471 (in Russian).Google Scholar
  17. Ivanova, E. A., & Vafina, G. H. (2006). Analysis of cell nuclear supramolecular structures during chromatin activation. Doklady Biological Sciences, 406(1), 73–75. doi: 10.1134/S0012496606010200.CrossRefPubMedGoogle Scholar
  18. Ivanova, E. A. & Vafina, G. H. (2010). Method of estimating impact of protein deacetylation inhibitor on induction of plant growth morphogenesis. RF Patent, 240458 (in Russian).Google Scholar
  19. Ivanova, E. A. & Vafina, G. H. (2011). Method of preparative isolation of basic proteins from suprastructures of cell nuclei of plants, RF Patent, 2408602 (in Russian).Google Scholar
  20. Ivanova, E. A., Vafina, G. H., & Ivanov, R. S. (2008). Experimental analysis of chromatin transcription activation during induction of morphogenesis in mature embryos of winter and spring wheats in the presence of a protein deacetylation inhibitor. Doklady Biological Sciences, 422, 336–338. doi: 10.1134/S0012496608050177.CrossRefPubMedGoogle Scholar
  21. Kuriakose, S. V., & Silvester, N. (2016). Genetic and molecular mechanisms of post-embryonic root radial patterning. Indian Journal of Plant Physiology, 21(4), 457–476.CrossRefGoogle Scholar
  22. Marfenin, N. N. (1999). The development of modular organization conception. Zhurnal Obshchei Biologii, 60(1), 6–17. (in Russian).Google Scholar
  23. Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6(11), 838–849. doi: 10.1038/nrm1761.CrossRefPubMedGoogle Scholar
  24. Morozova, Z. A., & Murashov, V. V. (2009). The genus Triticum L. morphogenesis kinds of wheat. Moscow: Triada. (in Russian).Google Scholar
  25. Pareek, A., & Chinnusamy, V. (2016). Editorial: Challenges and strategies in plant biology research. Indian Journal of Plant Physiology, 21(4), 375–376. doi: 10.1007/s40502-016-0269-5.CrossRefGoogle Scholar
  26. Pikaard, C. (2012). Reading the second code: Mapping epigenomes to understand plant growth, development, and adaptation to the environment. The Plant Cell, 24, 2257–2261. doi: 10.1105/tpc.112.100636.CrossRefGoogle Scholar
  27. Purohit, J. S., Chaturvedi, M. M. & Panda, P. (2012). Histone proteases: The tale of tail clippers. International Journal of Integrative Sciences, Innovation and Technology Section B 1(1), 51–60. ISSN 2278-1145.Google Scholar
  28. Qian, M.-X., Pang, Y., Liu, C. H., Haratake, K., Du, B.-Y., Ji, D.-Y., et al. (2013). Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell, 23, 1012–1024. doi: 10.1016/j.cell.2013.04.032.CrossRefGoogle Scholar
  29. Ramponi, G., Nassi, P., Liguri, G., Cappugi, G., & Grisolia, S. (1978). Purification and properties of a histone-specific protease from rat liver chromatin. FEBS Letters, 90(2), 228–232.CrossRefPubMedGoogle Scholar
  30. Razin, S. V., Borunova, V. V., Iarovaia, O. V. & Vassetzky, Y. S. (2014). Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. Biochemistry (Moscow), 79(7), 608–618. ISSN 00062979.Google Scholar
  31. Sadakierska-Chudy, A., & Filip, M. (2015). A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotoxicity Research, 27, 72–197. doi: 10.1007/s12640-014-9508-6.Google Scholar
  32. Sadoul, K., Boyault, C., Pabion, M., & Khochbin, S. (2008). Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie, 90, 306–312. doi: 10.1016/j.biochi.2007.06.009.CrossRefPubMedGoogle Scholar
  33. Shitikova, Z. V., Aksenov, N. D., Pospelov, V. A., & Pospelov, T. V. (2011). Cell senescence induced by histone deacetylase inhibitor sodium butyrate in rodent transformed cells resistant to apoptosis. Tsitologiia, 53(3), 277–284. (in Russian).PubMedGoogle Scholar
  34. Skowronska-Krawczyk, D., & Rosenfeld, M. G. (2015). Nuclear matrix revisited? Cell Cycle, 14(10), 1487–1488. doi: 10.1080/15384101.2015.1032643.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Telles, E., & Seto, E. (2012). Modulation of cell cycle regulators by HDACs. Frontiers in Bioscience (Scholar Edition), 1(4), 831–839.Google Scholar
  36. Turk, B., Turk, D., & Turk, V. (2012). Protease signaling: The cutting edge. The EMBO Journal, 31, 1630–1643. doi: 10.1038/emboj.2012.42.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vafina, G. H., & Ivanov, R. S. (2016). Localization of Arg-X proteolysis in the supramolecular structures of cell nuclei during the induction of growth in mature wheat germs. Indian Journal of Plant Physiology, 21(3), 370–373. doi: 10.1007/s40502-016-0235-2.CrossRefGoogle Scholar
  38. Vossaert, L., Meert, P., Scheerlinck, E., Glibert, P., Van Roy, N., Heindryckx, B., et al. (2014). Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Research, 13(1), 123–134. doi: 10.1016/j.scr.2014.05.002.CrossRefPubMedGoogle Scholar
  39. Watson, D., & Moudrianakis, E. (1982). Histone—Dependent reconstruction and nucleosomal localization of a non-histone chromosomal proteins the H2A-specific protease. Biochemistry, 21, 248–256.CrossRefPubMedGoogle Scholar
  40. Weintraub, H., & Van Lente, F. (1974). Dissection of chromosome structure with trypsin and nucleases. PNAS. Proceedings of the National Academy of Sciences of the United States of America, 71, 4249–4253.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yadav, S. P., & Das, H. K. (1974). Discontinuous incorporation of amino acids in embryo proteins of wheat during germination. Developmental Biology, 36, 183–186. doi: 10.1016/0012-1606(74)90200-0.CrossRefPubMedGoogle Scholar
  42. Zhou, P., Wu, E., Alam, H. B., & Li, Y. (2014). Histone cleavage as a mechanism for epigenetic regulation: Current insights and perspectives. Current Molecular Medicine, 14(9), 1164–1172.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zubairova, U. S., & Nikolaev, S. V. (2013). Models of stem cell niche structure regulation in shoot apical meristem. Vavilov Journal of Genetics and Breeding, 17(4/1), 738–747.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2017

Authors and Affiliations

  1. 1.Ufa Institute of BiologyRussian Academy of SciencesUfaRussia

Personalised recommendations