Indian Journal of Plant Physiology

, Volume 21, Issue 4, pp 437–445 | Cite as

CRISPR-Cas9 mediated genome editing in rice, advancements and future possibilities

  • Shamik Mazumdar
  • W. Paul Quick
  • Anindya Bandyopadhyay
Review Article


Rice is an important crop for a large portion of the population of the world, being the main source of food and the agriculture of which is the main source of income. Genome editing being the focal point of research in recent times is now rightly being targeted towards improving the quality of rice. Research using the CRISPR genome editing tools has increased the ability to target and modify rice genes for the development of improved varieties. However, current research is focused on improving even further the efficiency of the CRISPR genome editing tools to successfully edit endogenous rice genes. These studies indicate that genome editing is a successful and feasible venture in rice. Newer developments and improvements of CRIPSR tools have further enabled researchers to modify more genes in rice with increased efficiency. The ability of the CRISPR system to generate transgene free genome edited plants is further reason for continued research as it helps to step past genome modification regulatory issues. The successful application and development of CRISPR tools for genome editing in rice will not only help in making site-specific integration events, but will also help in regulating gene expression, gene discovery, rice functional genomics and creating new improved traits in rice.


CRISPR Cas9 Rice Genome editing Rice improvement 


  1. Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science,. doi:10.1126/science.aaf5573.PubMedPubMedCentralGoogle Scholar
  2. Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics,. doi:10.1093/bioinformatics/btu048.PubMedPubMedCentralGoogle Scholar
  3. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., & Nekrasov, V. (2015). Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32, 76–84.CrossRefPubMedGoogle Scholar
  5. Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333, 1843–1846.CrossRefPubMedGoogle Scholar
  6. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33, 41–52.CrossRefPubMedGoogle Scholar
  7. Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166, 1292–1297.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Endo, M., Mikami, M., & Toki, S. (2014). Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant and Cell Physiology,. doi:10.1093/pcp/pcu154.Google Scholar
  11. Endo, M., Mikami, M., & Toki, S. (2016). Biallelic gene targeting in rice. Plant Physiology, 170, 667–677.CrossRefPubMedGoogle Scholar
  12. Engler, C., Kandzia, R., & Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS ONE,. doi:10.1371/journal.pone.0003647.Google Scholar
  13. Fauser, F., Schiml, S., & Puchta, H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal, 79, 348–359.CrossRefPubMedGoogle Scholar
  14. Feng, C., Yuan, J., Wang, R., Liu, Y., Birchler, J. A., & Han, F. (2016). Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics & Genomics, 43, 37–43.CrossRefGoogle Scholar
  15. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23, 1229–1232.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., et al. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87, 99–110.CrossRefPubMedGoogle Scholar
  17. Geisinger, J. M., Turan, S., Hernandez, S., Spector, L. P., & Calos, M. P. (2016). In vivo blunt-end cloning through CRISPR/Cas9-facilitated nonhomologous end-joining. Nucleic Acids Research,. doi:10.1093/nar/gkv1542.PubMedPubMedCentralGoogle Scholar
  18. Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A. I. I. I., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6, 343–345.CrossRefPubMedGoogle Scholar
  19. Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L. F., Sontheimer, E. J., et al. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proceedings of National Academy of Sciences, 110, 15644–15649.CrossRefGoogle Scholar
  20. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827–832.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research,. doi:10.1093/nar/gkt780.Google Scholar
  22. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.CrossRefPubMedGoogle Scholar
  23. Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24, 1012–1019.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V., Nguyen, N. T., Zheng, Z., et al. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523, 481–485.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P., et al. (2011). TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.CrossRefPubMedGoogle Scholar
  26. Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., Liu, J., et al. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, 2, 16139.CrossRefPubMedGoogle Scholar
  27. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688–691.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liang, Z., Zhang, K., Chen, K., & Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics & Genomics, 41, 63–68.CrossRefGoogle Scholar
  29. Lozano-Juste, J., & Cutler, S. R. (2014). Plant genome engineering in full bloom. Trends in Plant Science, 19, 284–287.CrossRefPubMedGoogle Scholar
  30. Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., et al. (2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284.CrossRefPubMedGoogle Scholar
  31. Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., et al. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23, 1233.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mikami, M., Toki, S., & Endo, M. (2015a). Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Molecular Biology, 88, 561–572.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mikami, M., Toki, S., & Endo, M. (2015b). Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Reports, 34, 1807–1815.CrossRefPubMedGoogle Scholar
  34. Mikami, M., Toki, S., & Endo, M. (2016). Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant and Cell Physiology,. doi:10.1093/pcp/pcw049.PubMedPubMedCentralGoogle Scholar
  35. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691–693.CrossRefPubMedGoogle Scholar
  36. Qin, G., Gu, H., Ma, L., Peng, Y., Deng, X. W., Chen, Z., et al. (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 17, 471–482.CrossRefPubMedGoogle Scholar
  37. Sauer, N. J., Narváez-Vásquez, J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Woodward, M. J., et al. (2016). Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology, 170, 1917–1928.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9, 2395–2410.CrossRefPubMedGoogle Scholar
  39. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686–688.CrossRefPubMedGoogle Scholar
  40. Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84–88.CrossRefPubMedGoogle Scholar
  41. Townsend, J. A., Wright, D. A., Winfrey, R. J., Fu, F., Maeder, M. L., Joung, J. K., et al. (2009). High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 459, 442–445.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Voytas, D. F., & Gao, C. (2014). Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biology,. doi:10.1371/journal.pbio.1001877.PubMedPubMedCentralGoogle Scholar
  43. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951.CrossRefPubMedGoogle Scholar
  44. Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34, 1473–1476.CrossRefPubMedGoogle Scholar
  45. Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A modular cloning system for standardized assembly of multigene constructs. PLoS,. doi:10.1371/journal.pone.0016765.Google Scholar
  46. Woo, J. W., Kim, J., Kwon, S. I., Corvalán, C., Cho, S. W., Kim, H., et al. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 33, 1162–1164.CrossRefPubMedGoogle Scholar
  47. Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., et al. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology,. doi:10.1186/s12870-014-0327-y.Google Scholar
  48. Xu, R. F., Li, H., Qin, R. Y., Li, J., Qiu, C. H., Yang, Y. C., et al. (2015). Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports,. doi:10.1038/srep11491.Google Scholar
  49. Xu, R., Li, H., Qin, R., Wang, L., Li, L., Wei, P., et al. (2014). Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice,. doi:10.1186/s12284-014-0005-6.Google Scholar
  50. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., et al. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12, 797–807.CrossRefPubMedGoogle Scholar
  52. Zhou, H., Liu, B., Weeks, D. P., Spalding, M. H., & Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research,. doi:10.1093/nar/gku806.Google Scholar

Copyright information

© Indian Society for Plant Physiology 2016

Authors and Affiliations

  • Shamik Mazumdar
    • 1
  • W. Paul Quick
    • 1
  • Anindya Bandyopadhyay
    • 1
  1. 1.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations