Advertisement

The Gastrointestinal Microbiome in Chronic Renal Diseases

  • Mark A. Bryniarski
  • Sarah E. M. Hoffman
  • Rabi YacoubEmail author
Host Parasite Interactions in Periodontal Disease (C Genco and D Kinane, Section Editors)
  • 5 Downloads
Part of the following topical collections:
  1. Topical Collection on Host Parasite Interactions in Periodontal Disease
  2. Topical Collection on Host Parasite Interactions in Periodontal Disease

Abstract

Purpose of Review

The relationship between microorganisms within the gastrointestinal tract and the renal function of the host is reciprocal. The objective of the current review is therefore twofold. First, we aim to demonstrate the emerging role of gastrointestinal microbiome dysbiosis in the pathogenesis and progression of chronic kidney disease. Second, we highlight specific mechanisms as to how microbiome dysbiosis is provoked in chronic kidney disease.

Recent Findings

Current work has shown that microbiome dysbiosis can directly and indirectly influence renal physiology and contribute to the onset and development of chronic kidney disease, such as by stimulating hypertension. It is also becoming evident that the composition and function of both the intestinal and oral microbiomes are adversely impacted by chronic kidney disease, which can further exacerbate dysbiosis.

Summary

This review discusses the current knowledge on the associations between the gastrointestinal microbiome and renal health, to which Dr. Robert Genco has contributed substantially. As we mourn his loss, we celebrate his lifelong dedication to the advancement of research at the University at Buffalo and the microbiome research community worldwide.

Keywords

Microbiome Chronic kidney disease Dysbiosis 

Notes

Funding Information

This work was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) under award number UL1-TR-001412 to the Univ. at Buffalo and by the NIH. This work was also supported by the University at Buffalo Genome, Environment and Microbiome.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any primary research studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Chaves LD, McSkimming DI, Bryniarski MA, Honan AM, Abyad S, Thomas SA et al. Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis. Am J Physiol Renal Physiol. 2018;315(3):F487-F502. doi: https://doi.org/10.1152/ajprenal.00092.2018.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yacoub R, Nugent M, Cai W, Nadkarni GN, Chaves LD, Abyad S et al. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS One. 2017;12(9):e0184789. doi: https://doi.org/10.1371/journal.pone.0184789.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yacoub R, Nadkarni GN, McSkimming DI, Chaves LD, Abyad S, Bryniarski MA et al. Fecal microbiota analysis of polycystic kidney disease patients according to renal function: a pilot study. Exp Biol Med (Maywood). 2019;244(6):505–13. doi: https://doi.org/10.1177/1535370218818175.PubMedCrossRefGoogle Scholar
  4. 4.
    Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol. 2000;71(10):1554–60. doi: https://doi.org/10.1902/jop.2000.71.10.1554.PubMedCrossRefGoogle Scholar
  5. 5.
    Glurich I, Grossi S, Albini B, Ho A, Shah R, Zeid M et al. Systemic inflammation in cardiovascular and periodontal disease: comparative study. Clin Diagn Lab Immunol. 2002;9(2):425–32. doi: https://doi.org/10.1128/cdli.9.2.425-432.2002.CrossRefGoogle Scholar
  6. 6.
    Genco R, Offenbacher S, Beck J. Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J Am Dent Assoc. 2002;133 Suppl:14S–22S. doi: https://doi.org/10.14219/jada.archive.2002.0375.PubMedCrossRefGoogle Scholar
  7. 7.
    Hajishengallis G, Martin M, Schifferle RE, Genco RJ. Counteracting interactions between lipopolysaccharide molecules with differential activation of toll-like receptors. Infect Immun. 2002;70(12):6658–64. doi: https://doi.org/10.1128/iai.70.12.6658-6664.2002.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mougeot JC, Stevens CB, Paster BJ, Brennan MT, Lockhart PB, Mougeot FK. Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries. J Oral Microbiol. 2017;9(1):1281562. doi: https://doi.org/10.1080/20002297.2017.1281562.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    LaMonte MJ, Genco RJ, Hovey KM, Wallace RB, Freudenheim JL, Michaud DS et al. History of periodontitis diagnosis and edentulism as predictors of cardiovascular disease, stroke, and mortality in postmenopausal women. J Am Heart Assoc. 2017;6(4). doi: https://doi.org/10.1161/JAHA.116.004518.
  10. 10.
    Gordon JH, LaMonte MJ, Genco RJ, Zhao J, Li L, Hovey KM et al. Is the oral microbiome associated with blood pressure in older women? High Blood Press Cardiovasc Prev. 2019;26(3):217–25. doi: https://doi.org/10.1007/s40292-019-00322-8.CrossRefGoogle Scholar
  11. 11.
    Gordon JH, LaMonte MJ, Zhao J, Genco RJ, Cimato TR, Hovey KM et al. Association of periodontal disease and edentulism with hypertension risk in postmenopausal women. Am J Hypertens. 2019;32(2):193–201. doi: https://doi.org/10.1093/ajh/hpy164.CrossRefGoogle Scholar
  12. 12.
    Gordon JH, LaMonte MJ, Genco RJ, Zhao J, Cimato TR, Hovey KM et al. Association of clinical measures of periodontal disease with blood pressure and hypertension among postmenopausal women. J Periodontol. 2018;89(10):1193–202. doi: https://doi.org/10.1002/JPER.17-0562.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Taylor GW, Burt BA, Becker MP, Genco RJ, Shlossman M, Knowler WC et al. Severe periodontitis and risk for poor glycemic control in patients with non-insulin-dependent diabetes mellitus. J Periodontol. 1996;67 Suppl 10S:1085–93. doi: https://doi.org/10.1902/jop.1996.67.10s.1085.PubMedCrossRefGoogle Scholar
  14. 14.
    Jiao N, Baker SS, Nugent CA, Tsompana M, Cai L, Wang Y et al. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics. 2018;50(4):244–54. doi: https://doi.org/10.1152/physiolgenomics.00114.2017.PubMedCrossRefGoogle Scholar
  15. 15.
    CDC. Chronic kidney disease in the United States, 2019. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention. 2019.Google Scholar
  16. 16.
    Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713–35. doi: https://doi.org/10.1053/j.ajkd.2014.01.416.PubMedCrossRefGoogle Scholar
  17. 17.
    Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390(10105):1888–917. doi: https://doi.org/10.1016/S0140-6736(17)30788-2.CrossRefGoogle Scholar
  18. 18.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70. doi: https://doi.org/10.1016/j.cell.2012.01.035.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30. doi: https://doi.org/10.1038/nature11550.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6. doi: https://doi.org/10.1038/nature12506.PubMedCrossRefGoogle Scholar
  21. 21.
    Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. doi: https://doi.org/10.1038/nature11234.
  22. 22.
    Darkoh C, Plants-Paris K, Bishoff D, DuPont HL. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems. 2019;4(2). doi: https://doi.org/10.1128/mSystems.00346-18.
  23. 23.
    Taubman MA. Robert J. Genco: Pioneer in oral science advancement. J Dent Res. 2018;97(7):737–41. doi: https://doi.org/10.1177/0022034518770607.PubMedCrossRefGoogle Scholar
  24. 24.••
    Jansen J, Jansen K, Neven E, Poesen R, Othman A, van Mil A et al. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(32):16105–10. doi: https://doi.org/10.1073/pnas.1821809116. Thorough study demonstrating that bacterial metabolites generated within the intestine can influence aspects of renal function. CrossRefGoogle Scholar
  25. 25.
    Shah NB, Allegretti AS, Nigwekar SU, Kalim S, Zhao S, Lelouvier B et al. Blood microbiome profile in CKD: a pilot study. Clin J Am Soc Nephrol. 2019;14(5):692–701. doi: https://doi.org/10.2215/CJN.12161018.PubMedCrossRefGoogle Scholar
  26. 26.••
    Kikuchi K, Saigusa D, Kanemitsu Y, Matsumoto Y, Thanai P, Suzuki N et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019;10(1):1835. doi: https://doi.org/10.1038/s41467-019-09735-4. This group characterized phenyl sulfate renal toxicology and showed that lowering its production reduced albuminuria in diabetic animals.
  27. 27.
    Wallace K, Shafique S, Piamjariyakul U. The Relationship Between Oral Health and hemodialysis treatment among adults with chronic kidney disease: a systematic review. Nephrol Nurs J. 2019;46(4):375–94.Google Scholar
  28. 28.
    Araujo MV, Hong BY, Fava PL, Khan S, Burleson JA, Fares G et al. End stage renal disease as a modifier of the periodontal microbiome. BMC Nephrol. 2015;16:80. doi: https://doi.org/10.1186/s12882-015-0081-x.
  29. 29.••
    Hu J, Iragavarapu S, Nadkarni GN, Huang R, Erazo M, Bao X et al. Location-specific oral microbiome possesses features associated with CKD. Kidney Int Rep. 2018;3(1):193–204. doi: https://doi.org/10.1016/j.ekir.2017.08.018. One of only a handful of studies examining oral microbiome changes in CKD, this study detailed localized microbiome alterations within the mouths of CKD patients. PubMedCrossRefGoogle Scholar
  30. 30.
    Piccolo M, De Angelis M, Lauriero G, Montemurno E, Di Cagno R, Gesualdo L et al. Salivary microbiota associated with immunoglobulin A nephropathy. Microb Ecol. 2015;70(2):557–65. doi: https://doi.org/10.1007/s00248-015-0592-9.PubMedCrossRefGoogle Scholar
  31. 31.
    Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657–70. doi: https://doi.org/10.1681/ASN.2013080905.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.•
    Meijers B, Evenepoel P, Anders HJ. Intestinal microbiome and fitness in kidney disease. Nat Rev Nephrol. 2019;15(9):531–45. doi: https://doi.org/10.1038/s41581-019-0172-1. This review highlighted the notion of viewing the microbiome and the host in the context of ecology and fitness. It then provided considerable information on the various aspects of intestinal microbiome dysbiosis in CKD. PubMedCrossRefGoogle Scholar
  33. 33.
    Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018;14(7):442–56. doi: https://doi.org/10.1038/s41581-018-0018-2.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.•
    Zubcevic J, Richards EM, Yang T, Kim S, Sumners C, Pepine CJ et al. Impaired autonomic nervous system-microbiome circuit in hypertension. Circ Res. 2019;125(1):104–16. doi: https://doi.org/10.1161/CIRCRESAHA.119.313965. A recent and insightful review that discussed the contribution and mechanisms of intestinal microbiome dysbiosis in hypertension. PubMedCrossRefGoogle Scholar
  35. 35.
    Pluznick JL. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int. 2016;90(6):1191–8. doi: https://doi.org/10.1016/j.kint.2016.06.033.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bryniarski MA, Hamarneh F, Yacoub R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Experimental biology and medicine. 2019;244(6):514–25. doi: https://doi.org/10.1177/1535370219826526.PubMedCrossRefGoogle Scholar
  37. 37.
    Jovanovich A, Isakova T, Stubbs J. Microbiome and cardiovascular disease in CKD. Clin J Am Soc Nephrol. 2018;13(10):1598–604. doi: https://doi.org/10.2215/CJN.12691117.
  38. 38.
    Li DY, Tang WHW. Contributory role of gut microbiota and their metabolites toward cardiovascular complications in chronic kidney disease. Semin Nephrol. 2018;38(2):193–205. doi: https://doi.org/10.1016/j.semnephrol.2018.01.008.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    National Institutes of Health N. United States Renal Data System. 2018 USRDS annual data report: epidemiology of kidney disease in the United States. Bethesda, MD. 2018.Google Scholar
  40. 40.
    Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. The Journal of clinical investigation. 2011;121(6):2126–32. doi: https://doi.org/10.1172/JCI58109.PubMedCrossRefGoogle Scholar
  41. 41.
    Thaiss CA, Itav S, Rothschild D, Meijer MT, Levy M, Moresi C et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature. 2016;540(7634):544–51. doi: https://doi.org/10.1038/nature20796.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5. doi: https://doi.org/10.1038/nature25973.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. doi: https://doi.org/10.1038/nature12820.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. doi: https://doi.org/10.1126/science.1208344.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–94. doi: https://doi.org/10.1016/j.cell.2015.11.001.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50(4):747–57. doi: https://doi.org/10.1249/MSS.0000000000001495.CrossRefGoogle Scholar
  47. 47.
    Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5. doi: https://doi.org/10.1038/nature16504.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.•
    Riva A, Kuzyk O, Forsberg E, Siuzdak G, Pfann C, Herbold C et al. A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nat Commun. 2019;10(1):4366. doi: https://doi.org/10.1038/s41467-019-12413-0. A very intersting article that identified the spatial profile of diet-induced microbiome changes and the impact on the host epithelia.
  49. 49.
    Bier A, Braun T, Khasbab R, Di Segni A, Grossman E, Haberman Y et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10(9). doi: https://doi.org/10.3390/nu10091154.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi: https://doi.org/10.1038/nature05414.PubMedCrossRefGoogle Scholar
  51. 51.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science translational medicine. 2009;1(6):6ra14. doi: https://doi.org/10.1126/scitranslmed.3000322.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.•
    Martin AM, Yabut JM, Choo JM, Page AJ, Sun EW, Jessup CF et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(40):19802–4. doi: https://doi.org/10.1073/pnas.1909311116. A study that provided a novel mechanism as to how the intestinal microbiome is capable of influencing the systemic glucose homeostasis of its host. CrossRefGoogle Scholar
  53. 53.
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–62. doi: https://doi.org/10.1126/science.1224203.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8. doi: https://doi.org/10.1038/nature06245.PubMedCrossRefGoogle Scholar
  55. 55.
    Wahlstrom A, Sayin SI, Marschall HU, Backhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell metabolism. 2016;24(1):41–50. doi: https://doi.org/10.1016/j.cmet.2016.05.005.PubMedCrossRefGoogle Scholar
  56. 56.
    Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45. doi: https://doi.org/10.1016/j.cell.2016.05.041.PubMedCrossRefGoogle Scholar
  57. 57.
    Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74. doi: https://doi.org/10.1038/nature18847.PubMedCrossRefGoogle Scholar
  58. 58.
    Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75–84. doi: https://doi.org/10.1038/nature18848.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85. doi: https://doi.org/10.1038/nature10809.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9(4):1202–8. doi: https://doi.org/10.1016/j.celrep.2014.10.032.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Terce F et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric no-dependent and gut-brain axis mechanism. Cell metabolism. 2017;25(5):1075–90 e5. doi: https://doi.org/10.1016/j.cmet.2017.04.013.PubMedCrossRefGoogle Scholar
  62. 62.
    Meyer TW, Hostetter TH. Uremic solutes from colon microbes. Kidney Int. 2012;81(10):949–54. doi: https://doi.org/10.1038/ki.2011.504.PubMedCrossRefGoogle Scholar
  63. 63.
    Meijers BK, Bammens B, Verbeke K, Evenepoel P. A review of albumin binding in CKD. Am J Kidney Dis. 2008;51(5):839–50. doi: https://doi.org/10.1053/j.ajkd.2007.12.035.PubMedCrossRefGoogle Scholar
  64. 64.
    Meyer TW, Hostetter TH. Uremia. The New England journal of medicine. 2007;357(13):1316–25. doi: https://doi.org/10.1056/NEJMra071313.PubMedCrossRefGoogle Scholar
  65. 65.
    Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70. doi: https://doi.org/10.1681/ASN.2011121175.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.•
    Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of colon-derived uremic solutes. Clin J Am Soc Nephrol. 2018;13(9):1398–404. doi: https://doi.org/10.2215/CJN.03150318. This work was a comprehensive characterization of uremic solutes originating from the colon. PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol Dial Transplant. 2016;31(5):737–46. doi: https://doi.org/10.1093/ndt/gfv095.CrossRefGoogle Scholar
  68. 68.
    Chiu YW, Teitelbaum I, Misra M, de Leon EM, Adzize T, Mehrotra R. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol. 2009;4(6):1089–96. doi: https://doi.org/10.2215/CJN.00290109.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW et al. The systemic nature of CKD. Nat Rev Nephrol. 2017;13(6):344–58. doi: https://doi.org/10.1038/nrneph.2017.52.PubMedCrossRefGoogle Scholar
  70. 70.
    Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron. 1990;56(3):306–11. doi: https://doi.org/10.1159/000186158.PubMedCrossRefGoogle Scholar
  71. 71.
    Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32(7):754–9. doi: https://doi.org/10.1136/gut.32.7.754.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Vaziri ND, Dure-Smith B, Miller R, Mirahmadi MK. Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. The American journal of gastroenterology. 1985;80(8):608–11.Google Scholar
  73. 73.
    Vaziri ND, Yuan J, Nazertehrani S, Ni Z, Liu S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol. 2013;38(2):99–103. doi: https://doi.org/10.1159/000353764.PubMedCrossRefGoogle Scholar
  74. 74.
    Vaziri ND, Goshtasbi N, Yuan J, Jellbauer S, Moradi H, Raffatellu M et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol. 2012;36(5):438–43. doi: https://doi.org/10.1159/000343886.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol. 2013;37(1):1–6. doi: https://doi.org/10.1159/000345969.PubMedCrossRefGoogle Scholar
  76. 76.
    Andrade LS, Dalboni MA, Carvalho JTG, Grabulosa CC, Pereira NBF, Aoike DT et al. In vitro effect of uremic serum on barrier function and inflammation in human colonocytes. J Bras Nefrol. 2018;40(3):217–24. doi: https://doi.org/10.1590/2175-8239-JBN-3949.PubMedCrossRefGoogle Scholar
  77. 77.
    Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Digestive diseases and sciences. 2014;59(9):2109–17. doi: https://doi.org/10.1007/s10620-014-3202-7.PubMedCrossRefGoogle Scholar
  78. 78.
    McIntyre CW, Harrison LE, Eldehni MT, Jefferies HJ, Szeto CC, John SG et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(1):133–41. doi: https://doi.org/10.2215/CJN.04610510.PubMedCrossRefGoogle Scholar
  79. 79.
    Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2017;28(1):76–83. doi: https://doi.org/10.1681/ASN.2015111285.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Meijers B, Farre R, Dejongh S, Vicario M, Evenepoel P. Intestinal barrier function in chronic kidney disease. Toxins (Basel). 2018;10(7). doi: https://doi.org/10.3390/toxins10070298.PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Mair RD, Sirich TL. Blood microbiome in CKD: should we care? Clin J Am Soc Nephrol. 2019;14(5):648–9. doi: https://doi.org/10.2215/CJN.03420319.PubMedCrossRefGoogle Scholar
  82. 82.
    Niwa T. The protein metabolite theory as a mechanism for the progression of renal failure. J Ren Nutr. 2001;11(4):181–2.PubMedCrossRefGoogle Scholar
  83. 83.
    Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M et al. p-cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83(4):582–92. doi: https://doi.org/10.1038/ki.2012.448.PubMedCrossRefGoogle Scholar
  84. 84.
    Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA, Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10(10). doi: https://doi.org/10.3390/nu10101398.PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55. doi: https://doi.org/10.1161/CIRCRESAHA.116.305360.PubMedCrossRefGoogle Scholar
  86. 86.
    Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi: https://doi.org/10.1186/s40168-016-0222-x.
  87. 87.•
    Toral M, Robles-Vera I, de la Visitacion N, Romero M, Yang T, Sanchez M et al. Critical role of the interaction gut microbiota-sympathetic nervous system in the regulation of blood pressure. Front Physiol. 2019;10:231. doi: https://doi.org/10.3389/fphys.2019.00231. This study measured the ability of the microbiome to cause or decrease hypertension via fecal matter transplant studies.
  88. 88.
    Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. doi: https://doi.org/10.1038/nature24628.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11(2):72–80.Google Scholar
  90. 90.
    Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci. 2015;7(2):63–72. doi: https://doi.org/10.1038/ijos.2015.2.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Berthelot JM, Le Goff B. Rheumatoid arthritis and periodontal disease. Joint Bone Spine. 2010;77(6):537–41. doi: https://doi.org/10.1016/j.jbspin.2010.04.015.PubMedCrossRefGoogle Scholar
  92. 92.
    Vodanovic M, Peros K, Zukanovic A, Knezevic M, Novak M, Slaus M et al. Periodontal diseases at the transition from the late antique to the early mediaeval period in Croatia. Arch Oral Biol. 2012;57(10):1362–76. doi: https://doi.org/10.1016/j.archoralbio.2012.04.003.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen LP, Chiang CK, Chan CP, Hung KY, Huang CS. Does periodontitis reflect inflammation and malnutrition status in hemodialysis patients? Am J Kidney Dis. 2006;47(5):815–22. doi: https://doi.org/10.1053/j.ajkd.2006.01.018.PubMedCrossRefGoogle Scholar
  94. 94.
    Shultis WA, Weil EJ, Looker HC, Curtis JM, Shlossman M, Genco RJ et al. Effect of periodontitis on overt nephropathy and end-stage renal disease in type 2 diabetes. Diabetes Care. 2007;30(2):306–11. doi: https://doi.org/10.2337/dc06-1184.CrossRefGoogle Scholar
  95. 95.
    Akar H, Akar GC, Carrero JJ, Stenvinkel P, Lindholm B. Systemic consequences of poor oral health in chronic kidney disease patients. Clin J Am Soc Nephrol. 2011;6(1):218–26. doi: https://doi.org/10.2215/CJN.05470610.PubMedCrossRefGoogle Scholar
  96. 96.
    Parkar SM, Ajithkrishnan CG. Periodontal status in patients undergoing hemodialysis. Indian J Nephrol. 2012;22(4):246–50. doi: https://doi.org/10.4103/0971-4065.101242.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Palmer SC, Ruospo M, Wong G, Craig JC, Petruzzi M, De Benedittis M et al. Dental health and mortality in people with end-stage kidney disease treated with hemodialysis: a multinational cohort study. Am J Kidney Dis. 2015;66(4):666–76. doi: https://doi.org/10.1053/j.ajkd.2015.04.051.PubMedCrossRefGoogle Scholar
  98. 98.
    Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276–86. doi: https://doi.org/10.1111/odi.12509.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lourenvarsigmao TGB, Spencer SJ, Alm EJ, Colombo APV. Defining the gut microbiota in individuals with periodontal diseases: an exploratory study. J Oral Microbiol. 2018;10(1):1487741. doi: https://doi.org/10.1080/20002297.2018.1487741.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mark A. Bryniarski
    • 1
  • Sarah E. M. Hoffman
    • 2
  • Rabi Yacoub
    • 3
    Email author
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUSA
  2. 2.Department of Anthropology, College of Arts and SciencesUniversity at BuffaloBuffaloUSA
  3. 3.Department of Internal Medicine, Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloUSA

Personalised recommendations