Advertisement

Porphyromonas gingivalis: Immune Subversion Activities and Role in Periodontal Dysbiosis

  • George HajishengallisEmail author
  • Patricia I. DiazEmail author
Host Parasite Interactions in Periodontal Disease (C Genco and D Kinane, Section Editors)
  • 25 Downloads
Part of the following topical collections:
  1. Topical Collection on Host Parasite Interactions in Periodontal Disease
  2. Topical Collection on Host Parasite Interactions in Periodontal Disease

Abstract

Purpose of Review

This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease.

Recent Findings

Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species.

Summary

Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.

Keywords

P. gingivalis Inflammation Dysbiosis Immune subversion Periodontitis 

Notes

Funding Information

GH is supported by US Public Health Service grants from the National Institutes of Health (DE015254, DE024153, DE024716, and DE026152).

Compliance with Ethical Standards

Conflict of Interest

George Hajishengallis is an inventor of a patent that describes the use of complement inhibitors for therapeutic purposes in periodontal disease. Patricia I. Diaz declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any primary research studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44.PubMedCrossRefGoogle Scholar
  2. 2.
    Diaz PI, Hoare A, Hong BY. Subgingival microbiome shifts and community dynamics in periodontal diseases. Journal of the California Dental Association. 2016;44(7):421–35.PubMedGoogle Scholar
  3. 3.
    Kebschull M, Demmer RT, Papapanou PN. “Gum bug leave my heart alone”: epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis. J Dent Res. 2010;89:879–902.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    •• Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333 This study identified the presence of gingipains from the keystone pathogenPorphyromonas gingivalisin the brain of Alzheimer’s patients, and showed that inhibition of gingipains by small-molecule inhibitors reduced theP. gingivalisload in a preclinical brain infection model. PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol. 2017;13(10):606–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kholy KE, Genco RJ, Van Dyke TE. Oral infections and cardiovascular disease. Trends Endocrinol Metab. 2015;26(6):315–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Barth K, Remick DG, Genco CA. Disruption of immune regulation by microbial pathogens and resulting chronic inflammation. J Cell Physiol. 2013;228:1413–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038.PubMedCrossRefGoogle Scholar
  10. 10.
    Dickinson DP, Kubiniec MA, Yoshimura F, Genco RJ. Molecular cloning and sequencing of the gene encoding the fimbrial subunit protein of Bacteroides gingivalis. J Bacteriol. 1988;170(4):1658–65.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev. 1998;62:1244–63.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Atanasova KR, Yilmaz O. Looking in the Porphyromonas gingivalis cabinet of curiosities: the microbium, the host and cancer association. Mol Oral Microbiol. 2014;29(2):55–66.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Amano A, Takeuchi H, Furuta N. Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes and Infection / Institut Pasteur. 2010;12(11):791–8.CrossRefGoogle Scholar
  14. 14.
    Hajishengallis G, Ratti P, Harokopakis E. Peptide mapping of bacterial fimbrial epitopes interacting with pattern recognition receptors. J Biol Chem. 2005;280(47):38902–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. Oral Microbiol Immunol. 2000;15(6):341–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Hajishengallis G. Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? Microbes and infection / Institut Pasteur. 2009;11(6–7):637–45.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hajishengallis G, Sojar H, Genco RJ, DeNardin E. Intracellular signaling and cytokine induction upon interactions of Porphyromonas gingivalis fimbriae with pattern-recognition receptors. Immunol Investig. 2004;33(2):157–72.CrossRefGoogle Scholar
  18. 18.
    Gibson FC 3rd, Hong C, Chou HH, Yumoto H, Chen J, Lien E, et al. Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2004;109(22):2801–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Hajishengallis G, Martin M, Sojar HT, Sharma A, Schifferle RE, DeNardin E, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Diagn Lab Immunol. 2002;9(2):403–11.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Eskan MA, Hajishengallis G, Kinane DF. Differential activation of human gingival epithelial cells and monocytes by Porphyromonas gingivalis fimbriae. Infect Immun. 2007;75(2):892–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Jotwani R, Cutler CW. Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infect Immun. 2004;72(3):1725–32.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME J. 2013;7(5):1016–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal. 2012;6(6):1176–85.PubMedCrossRefGoogle Scholar
  24. 24.
    Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. mBio. 2014;5(2):e01012–4.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10(5):497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Rosier BT, de Jager M, Zaura E, Krom BP. Historical and contemporary hypotheses on the development of oral diseases: are we there yet? Front Cell Infect Microbiol. 2014;4:92.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–19.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sharma A, Honma K, Evans RT, Hruby DE, Genco RJ. Oral immunization with recombinant Streptococcus gordonii expressing Porphyromonas gingivalis FimA domains. Infect Immun. 2001;69(5):2928–34.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sojar HT, Han Y, Hamada N, Sharma A, Genco RJ. Role of the amino-terminal region of Porphyromonas gingivalis fimbriae in adherence to epithelial cells. Infect Immun. 1999;67(11):6173–6.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Njoroge T, Genco RJ, Sojar HT, Hamada N, Genco CA. A role for fimbriae in Porphyromonas gingivalis invasion of oral epithelial cells. Infect Immun. 1997;65(5):1980–4.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Amano A, Fujiwara T, Nagata H, Kuboniwa M, Sharma A, Sojar HT, et al. Porphyromonas gingivalis fimbriae mediate coaggregation with Streptococcus oralis through specific domains. J Dent Res. 1997;76(4):852–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Amano A, Sharma A, Lee JY, Sojar HT, Raj PA, Genco RJ. Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin. Infect Immun. 1996;64(5):1631–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sojar HT, Lee J-Y, Genco RJ. Fibronectin binding domain of P. gingivalis fimbriae. Biochem Biophys Res Commun. 1995;216(3):785–92.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Amano A, Sojar HT, Lee JY, Sharma A, Levine MJ, Genco RJ. Salivary receptors for recombinant fimbrillin of Porphyromonas gingivalis. Infect Immun. 1994;62(8):3372–80.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Amano A, Sharma A, Sojar HT, Kuramitsu HK, Genco RJ. Effects of temperature stress on expression of fimbriae and superoxide dismutase by Porphyromonas gingivalis. Infect Immun. 1994;62:4682–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sojar HT, Lee JY, Bedi GS, Cho M-I, Genco RJ. Purification, characterization and immunolocalization of fimbrial protein from Porphyromonas (Bacteroides) gingivalis. Biochem Biophys Res Commun. 1991;175(2):713–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Klausen B, Evans RT, Ramamurthy NS, Golub LM, Sfintescu C, Lee JY, et al. Periodontal bone level and gingival proteinase activity in gnotobiotic rats immunized with Bacteroides gingivalis. Oral Microbiol Immunol. 1991;6(4):193–201.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Griffen AL, Becker MR, Lyons SR, Moeschberger ML, Leys EJ. Prevalence of Porphyromonas gingivalis and periodontal health status. J Clin Microbiol. 1998;36(11):3239–42.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7(1):27.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Slots J, Gibbons RJ. Attachment of Bacteroides melaninogenicus subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and of periodontal pockets. Infect Immun. 1978;19(1):254–64.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Maeda K, Nagata H, Nonaka A, Kataoka K, Tanaka M, Shizukuishi S. Oral streptococcal glyceraldehyde-3-phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis fimbriae. Microbes Infect. 2004;6(13):1163–70.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Park Y, Simionato MR, Sekiya K, Murakami Y, James D, Chen W, et al. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect Immun. 2005;73(7):3983–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Periasamy S, Kolenbrander PE. Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol. 2009;191(22):6804–11.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lamont RJ, El-Sabaeny A, Park Y, Cook GS, Costerton JW, Demuth DR. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology. 2002;148(6):1627–36.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol. 2006;60(1):121–39.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    •• Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol. 2017.  https://doi.org/10.1038/s41564-017-0021-6This study has demonstrated multidimensional communication betweenPorphyromonas gingivalisandStreptococcus gordoniiin the oral microbial community that can either enhance or suppress the pathogenicity of the community. PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lin X, Lamont RJ, Wu J, Xie H. Role of differential expression of streptococcal arginine deiminase in inhibition of fimA expression in Porphyromonas gingivalis. J Bacteriol. 2008;190(12):4367–71.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wang BY, Wu J, Lamont RJ, Lin X, Xie H. Negative correlation of distributions of Streptococcus cristatus and Porphyromonas gingivalis in subgingival plaque. J Clin Microbiol. 2009;47(12):3902–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Xie H, Hong J, Sharma A, Wang BY. Streptococcus cristatus ArcA interferes with Porphyromonas gingivalis pathogenicity in mice. J Periodontal Res. 2012;47(5):578–83.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Duran-Pinedo AE, Baker VD, Frias-Lopez J. The periodontal pathogen Porphyromonas gingivalis induces expression of transposases and cell death of Streptococcus mitis in a biofilm model. Infect Immun. 2014;82(8):3374–82.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhou P, Liu J, Merritt J, Qi F. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells. Mol Oral Microbiol. 2015;30(4):269–79.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhou P, Li X, Qi F. Identification and characterization of a haem biosynthesis locus in Veillonella. Microbiology. 2016;162(10):1735–43.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Diaz PI, Zilm PS, Rogers AH. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology. 2002;148(Pt 2):467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun. 1998;66(10):4729–32.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Diaz PI, Zilm PS, Rogers AH. The response to oxidative stress of Fusobacterium nucleatum grown in continuous culture. FEMS Microbiol Lett. 2000;187(1):31–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Grenier D. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect Immun. 1992;60(12):5298–301.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Meuric V, Martin B, Guyodo H, Rouillon A, Tamanai-Shacoori Z, Barloy-Hubler F, et al. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol Oral Microbiol. 2013;28(1):40–53.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, et al. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun. 2007;75(4):1704–12.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kesavalu L, Holt SC, Ebersole JL. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol Immunol. 1998;13(6):373–7.PubMedCrossRefGoogle Scholar
  64. 64.
    • Sztukowska MN, Dutton LC, Delaney C, Ramsdale M, Ramage G, Jenkinson HF, et al. Community development between Porphyromonas gingivalis and Candida albicans mediated by InlJ and Als3. mBio. 2018;9(2) This paper has characterized inter-kingdom interactions betweenCandida albicansandPorphyromonas gingivalisthat regulate gene expression byP. gingivalisin a manner that increases its pathogenic potential. Google Scholar
  65. 65.
    Reynaud AH, Nygaard-Ostby B, Boygard GK, Eribe ER, Olsen I, Gjermo P. Yeasts in periodontal pockets. J Clin Periodontol. 2001;28(9):860–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Urzua B, Hermosilla G, Gamonal J, Morales-Bozo I, Canals M, Barahona S, et al. Yeast diversity in the oral microbiota of subjects with periodontitis: Candida albicans and Candida dubliniensis colonize the periodontal pockets. Med Mycol. 2008;46(8):783–93.PubMedCrossRefGoogle Scholar
  67. 67.
    Jarvensivu A, Hietanen J, Rautemaa R, Sorsa T, Richardson M. Candida yeasts in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Oral Dis. 2004;10(2):106–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Canabarro A, Valle C, Farias MR, Santos FB, Lazera M, Wanke B. Association of subgingival colonization of Candida albicans and other yeasts with severity of chronic periodontitis. J Periodontal Res. 2013;48(4):428–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Darveau RP, Belton CM, Reife RA, Lamont RJ. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun. 1998;66(4):1660–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Calkins CC, Platt K, Potempa J, Travis J. Inactivation of tumor necrosis factor-a by proteinases (gingipains) from the periodontal pathogen, Porphyromonas gingivalis. Implications of immune evasion. J Biol Chem. 1998;273(12):6611–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Hajishengallis G, Lamont RJ. Breaking bad: manipulation of the host response by Porphyromonas gingivalis. Eur J Immunol. 2014;44(2):328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol 2013;5.  https://doi.org/10.3402/jom.v5i0.19804 CrossRefGoogle Scholar
  73. 73.
    Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol. 2006;24:353–89.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Hajishengallis G, Wang M, Harokopakis E, Triantafilou M, Triantafilou K. Porphyromonas gingivalis fimbriae proactively modulate β2 integrin adhesive activity and promote binding to and internalization by macrophages. Infect Immun. 2006;74(10):5658–66.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006;281(41):31002–11.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Triantafilou K, Triantafilou M, Dedrick RL. A CD14-independent LPS receptor cluster. Nat Immunol. 2001;2(4):338–45.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, et al. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem. 2002;277(49):47834–43.PubMedCrossRefGoogle Scholar
  81. 81.
    Hajishengallis G, Lambris JD. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev. 2016;274(1):233–44.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11(3):187–200.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 2016;24(6):477–89.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hajishengallis G, Wang M, Liang S, Triantafilou M, Triantafilou K. Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci U S A. 2008;105(36):13532–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pierce DL, Nishiyama S, Liang S, Wang M, Triantafilou M, Triantafilou K, et al. Host adhesive activities and virulence of novel fimbrial proteins of Porphyromonas gingivalis. Infect Immun. 2009;77(8):3294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    McIntosh ML, Hajishengallis G. Inhibition of Porphyromonas gingivalis-induced periodontal bone loss by CXCR4 antagonist treatment. Mol Oral Microbiol. 2012;27(6):449–57.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hajishengallis G, Shakhatreh MA, Wang M, Liang S. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. J Immunol. 2007;179(4):2359–67.PubMedCrossRefGoogle Scholar
  88. 88.
    Wang M, Shakhatreh MA, James D, Liang S, Nishiyama S, Yoshimura F, et al. Fimbrial proteins of Porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. J Immunol. 2007;179(4):2349–58.PubMedCrossRefGoogle Scholar
  89. 89.
    Liang S, Krauss JL, Domon H, McIntosh ML, Hosur KB, Qu H, et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J Immunol. 2011;186(2):869–77.PubMedCrossRefGoogle Scholar
  90. 90.
    Wang M, Krauss JL, Domon H, Hosur KB, Liang S, Magotti P, et al. Microbial hijacking of complement-toll-like receptor crosstalk. Science Signaling. 2010;(109):3, ra11.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe. 2014;15(6):768–78.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Oliva C, Turnbough CL Jr, Kearney JF. CD14-Mac-1 interactions in Bacillus anthracis spore internalization by macrophages. Proc Natl Acad Sci U S A. 2009;106(33):13957–62.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dai S, Rajaram MV, Curry HM, Leander R, Schlesinger LS. Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog. 2013;9(1):e1003114.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Park HD, Lee Y, Oh YK, Jung JG, Park YW, Myung K et al. Pancreatic adenocarcinoma upregulated factor promotes metastasis by regulating TLR/CXCR4 activation. Oncogene. 2011;30(2):201–11.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res. 2012;91(9):816–20.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Coats SR, Jones JW, Do CT, Braham PH, Bainbridge BW, To TT, et al. Human Toll-like receptor 4 responses to P. gingivalis are regulated by lipid A 1- and 4′- phosphatase activities. Cellular Microbiology. 2009;11:1587–99.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Curtis MA, Percival RS, Devine D, Darveau RP, Coats SR, Rangarajan M, et al. Temperature dependent modulation of Porphyromonas gingivalis lipid A structure and interaction with the innate host defences. Infect Immun. 2011;79:1187–93.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Al-Qutub MN, Braham PH, Karimi-Naser LM, Liu X, Genco CA, Darveau RP. Hemin-dependent modulation of the lipid A structure of Porphyromonas gingivalis lipopolysaccharide. Infect Immun. 2006;74(8):4474–85.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zenobia C, Hasturk H, Nguyen D, Van Dyke TE, Kantarci A, Darveau RP. Porphyromonas gingivalis lipid A phosphatase activity is critical for colonization and increasing the commensal load in the rabbit ligature model. Infect Immun. 2014;82(2):650–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Slocum C, Coats SR, Hua N, Kramer C, Papadopoulos G, Weinberg EO, et al. Distinct lipid A moieties contribute to pathogen-induced site-specific vascular inflammation. PLoS Pathog. 2014;10(7):e1004215.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hajishengallis G, Tapping RI, Harokopakis E, Nishiyama S, Ratti P, Schifferle RE, et al. Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern recognition apparatus. Cell Microbiol. 2006;8(10):1557–70.PubMedCrossRefGoogle Scholar
  102. 102.
    Asai Y, Ohyama Y, Gen K, Ogawa T. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2. Infect Immun. 2001;69:7387–95.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Harokopakis E, Hajishengallis G. Integrin activation by bacterial fimbriae through a pathway involving CD14, Toll-like receptor 2, and phosphatidylinositol-3-kinase. Eur J Immunol. 2005;35(4):1201–10.PubMedCrossRefGoogle Scholar
  104. 104.
    Harokopakis E, Albzreh MH, Martin MH, Hajishengallis G. TLR2 transmodulates monocyte adhesion and transmigration via Rac1- and PI3K-mediated inside-out signaling in response to Porphyromonas gingivalis fimbriae. J Immunol. 2006;176(12):7645–56.PubMedCrossRefGoogle Scholar
  105. 105.
    Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 2002;31:485–516.PubMedCrossRefGoogle Scholar
  106. 106.
    Hajishengallis G, Wang M, Liang S. Induction of distinct TLR2-mediated proinflammatory and proadhesive signaling pathways in response to Porphyromonas gingivalis fimbriae. J Immunol. 2009;182(11):6690–6.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lowell CA. Rewiring phagocytic signal transduction. Immunity. 2006;24:243–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Wright SD, Silverstein SC. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med. 1983;158(6):2016–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998;282(5394):1717–21.PubMedCrossRefGoogle Scholar
  110. 110.
    Hellwig SM, van Oirschot HF, Hazenbos WL, van Spriel AB, Mooi FR, van De Winkel JG. Targeting to Fcg receptors, but not CR3 (CD11b/CD18), increases clearance of Bordetella pertussis. J Infect Dis. 2001;183(6):871–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Cyktor JC, Turner J. Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 2011;79(8):2964–73.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014;29(6):248–57.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol. 2011;38:49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Delima AJ, Van Dyke TE. Origin and function of the cellular components in gingival crevice fluid. Periodontology 2000. 2003;31:55–76.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–73.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hajishengallis G, Chavakis T, Hajishengallis E, Lambris JD. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J Leukoc Biol. 2015;98(4):539–48.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Lange D, Schroeder HE. Cytochemistry and ultrastructure of gingival sulcus cells. Helv Odontol Acta. 1971;15:65–86.Google Scholar
  118. 118.
    Newman HN. Neutrophils and IgG at the host-plaque interface on children’s teeth. J Periodontol. 1980;51(11):642–51.PubMedCrossRefGoogle Scholar
  119. 119.
    Schroeder HE, Listgarten MA. The gingival tissues: the architecture of periodontal protection. Periodontology 2000. 1997;13(1):91–120.PubMedCrossRefGoogle Scholar
  120. 120.
    Ryder MI. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontology 2000. 2010;53:124–37.PubMedCrossRefGoogle Scholar
  121. 121.
    Vitkov L, Klappacher M, Hannig M, Krautgartner WD. Neutrophil fate in gingival crevicular fluid. Ultrastruct Pathol. 2010;34(1):25–30.PubMedCrossRefGoogle Scholar
  122. 122.
    Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontology 2000. 2007;43:160–232.PubMedCrossRefGoogle Scholar
  123. 123.
    Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE. Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem. 1992;267(26):18902–7.PubMedGoogle Scholar
  124. 124.
    Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. 2017;18(12):1288–98.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Burns E, Bachrach G, Shapira L, Nussbaum G. Cutting edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J Immunol. 2006;177(12):8296–300.PubMedCrossRefGoogle Scholar
  126. 126.
    Maekawa T, Briones RA, Resuello RR, Tuplano JV, Hajishengallis E, Kajikawa T, et al. Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3. J Clin Periodontol. 2016;43:238–49.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    •• Kajikawa T, Briones RA, RRG R, Tuplano JV, Reis ES, Hajishengallis E, et al. Safety and efficacy of the complement inhibitor AMY-101 in a natural model of periodontitis in non-human primates. Mol Ther Methods Clin Dev. 2017;6:207–15 This study has established the safety and efficacy of a small-molecule inhibitor of complement C3 in non-human primate periodontitis and paved the way to a clinical trial in humans. PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Maekawa T, Abe T, Hajishengallis E, Hosur KB, DeAngelis RA, Ricklin D, et al. Genetic and intervention studies implicating complement C3 as a major target for the treatment of periodontitis. J Immunol. 2014;192(12):6020–7.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chaves ES, Jeffcoat MK, Ryerson CC, Snyder B. Persistent bacterial colonization of Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans in periodontitis and its association with alveolar bone loss after 6 months of therapy. J Clin Periodontol. 2000;27(12):897–903.PubMedCrossRefGoogle Scholar
  130. 130.
    Moore WE, Moore LH, Ranney RR, Smibert RM, Burmeister JA, Schenkein HA. The microflora of periodontal sites showing active destructive progression. J Clin Periodontol. 1991;18(10):729–39.PubMedCrossRefGoogle Scholar
  131. 131.
    Moore WE, Holdeman LV, Smibert RM, Hash DE, Burmeister JA, Ranney RR. Bacteriology of severe periodontitis in young adult humans. Infect Immun. 1982;38(3):1137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J Clin Microbiol. 2006;44(10):3665–73.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Doungudomdacha S, Rawlinson A, Douglas CW. Enumeration of Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans in subgingival plaque samples by a quantitative-competitive PCR method. J Med Microbiol. 2000;49(10):861–74.PubMedCrossRefGoogle Scholar
  134. 134.
    Page RC, Lantz MS, Darveau R, Jeffcoat M, Mancl L, Houston L, et al. Immunization of Macaca fascicularis against experimental periodontitis using a vaccine containing cysteine proteases purified from Porphyromonas gingivalis. Oral Microbiol Immunol. 2007;22(3):162–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Hajishengallis G, Hajishengallis E, Kajikawa T, Wang B, Yancopoulou D, Ricklin D, et al. Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application. Semin Immunol. 2016;28(3):285–91.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Oral Health and Diagnostic Sciences, Division of PeriodontologyUConn HealthFarmingtonUSA

Personalised recommendations