Advertisement

Current Understanding of the Gut Microflora in Subjects with Nutrition-Associated Metabolic Disorder Such as Obesity and/or Diabetes: Is There Any Relevance with Oral Microflora?

  • Hiromichi YumotoEmail author
  • Takashi Uebanso
  • Takaaki Shimohata
  • Akira Takahashi
Oral Disease and Nutrition (F Nishimura, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Oral Disease and Nutrition

Abstract

Purpose of Review

The oral cavity is one of the main gateways to the whole body and leads to the gastrointestinal tract. Both oral cavity and gastrointestinal tract have complex ecosystems of microorganisms called microbiota. Recent studies have shown that altered local microbiome in human, such as gut microflora, is associated with various systemic diseases. This review focuses on the association between the microbiota at local sites, such as gut and oral cavity, and the systemic diseases, especially nutrition-associated metabolic disorder, such as obesity and/or diabetes.

Recent Findings

The gut microbiota has a potential for regulation in host immune system and metabolisms, such as energy, glucose, and lipid, and is therefore an additional contributing environmental factor to the pathophysiology of obesity and diabetes as well as gut infectious inflammatory diseases. In addition, oral microorganisms play important roles as reservoirs for exacerbation of gut diseases, and altered oral microbial profiles causing periodontal diseases, which is one of common oral infectious diseases, has been also associated with several systemic diseases including diabetes.

Summary

It is necessary to consider that impaired oral microbiota, called oral dysbiosis, may affect the metabolic disorders leading to obesity and diabetes in addition to the gut inflammatory diseases via alteration of gut microflora. The relevance of oral microflora to gut dysbiosis leading to nutrition-associated metabolic disorder should be addressed as future investigations.

Keywords

Oral microflora Gut microflora Dysbiosis Metabolic disorder Obesity Diabetes 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, et al. Microbiota and metabolic diseases. Endocrine. 2018;61(3):357–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Le Bars P, Matamoros S, Montassier E, Le Vacon F, Potel G, Soueidan A, et al. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol. 2017;63(6):475–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    •• Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200(4):525–40 This manuscript presents an insight of various associated aspects of the human oral microbiome and disbiotic oral microbiota. PubMedCrossRefGoogle Scholar
  5. 5.
    Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017;74(20):3769–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Nishijima S, Suda W, Oshima K, Kim SW, Hirose Y, Morita H, et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016;23(2):125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  10. 10.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, et al. Functional food science and gastrointestinal physiology and function. Br J Nutr. 1998;80(Suppl 1):S147–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Rajilic-Stojanovic M, Smidt H, de Vos WM. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 2007;9(9):2125–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol. 2014;16(7):1004–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079–89.PubMedCrossRefGoogle Scholar
  17. 17.
    Schubert AM, Rogers MA, Ring C, Mogle J, Petrosino JP, Young VB, et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio. 2014;5(3):e01021–14.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sartor RB. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunol. 2011;4(2):127–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146(6):1500–12.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Marra F, Marra CA, Richardson K, Lynd LD, Kozyrskyj A, Patrick DM, et al. Antibiotic use in children is associated with increased risk of asthma. Pediatrics. 2009;123(3):1003–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.PubMedCrossRefGoogle Scholar
  26. 26.
    Pear SM, Williamson TH, Bettin KM, Gerding DN, Galgiani JN. Decrease in nosocomial Clostridium difficile-associated diarrhea by restricting clindamycin use. Ann Intern Med. 1994;120(4):272–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, et al. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis. 2008;197(3):435–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Weingarden AR, Chen C, Bobr A, Yao D, Lu Y, Nelson VM, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):G310–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190(7):2505–12.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Hernandez-Doria JD, Sperandio V. Nutrient and chemical sensing by intestinal pathogens. Microbes Infect. 2013;15(12):759–64.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  35. 35.
    Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–7.PubMedCrossRefGoogle Scholar
  37. 37.
    • Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe. 2018;24(2):296–307 e7 This manuscript represents mechanism of colonization resistance of Salmonella infecction, via gut commensal-produced metabolite. PubMedCrossRefGoogle Scholar
  38. 38.
    Wostmann BS, Larkin C, Moriarty A, Bruckner-Kardoss E. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab Anim Sci. 1983;33(1):46–50.PubMedGoogle Scholar
  39. 39.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1):58–65.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016;73(4):737–55.PubMedCrossRefGoogle Scholar
  45. 45.
    van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr. 2017;147(5):727–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018;9:900.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Klingbeil E, de La Serre CB. Microbiota modulation by eating patterns and diet composition: impact on food intake. Am J Phys Regul Integr Comp Phys. 2018;315(6):R1254–R60.Google Scholar
  48. 48.
    Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM, Shen X, et al. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361(6408):eaat5236.PubMedCrossRefGoogle Scholar
  49. 49.
    Kocelak P, Zak-Golab A, Zahorska-Markiewicz B, Aptekorz M, Zientara M, Martirosian G, et al. Resting energy expenditure and gut microbiota in obese and normal weight subjects. Eur Rev Med Pharmacol Sci. 2013;17(20):2816–21.PubMedGoogle Scholar
  50. 50.
    Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010;33(10):2277–84.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Duca FA, Lam TK. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab. 2014;16(Suppl 1):68–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology. 2017;152(7):1671–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–36.PubMedCrossRefGoogle Scholar
  57. 57.
    Udayappan SD, Kovatcheva-Datchary P, Bakker GJ, Havik SR, Herrema H, Cani PD, et al. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS One. 2017;12(11):e0181693.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Creely SJ, McTernan PG, Kusminski CM, Fisher f M, Da Silva NF, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Gummesson A, Carlsson LM, Storlien LH, Backhed F, Lundin P, Lofgren L, et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (Silver Spring). 2011;19(11):2280–2.CrossRefGoogle Scholar
  62. 62.
    Troseid M, Nestvold TK, Rudi K, Thoresen H, Nielsen EW, Lappegard KT. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care. 2013;36(11):3627–32.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, et al. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep. 2017;18(7):1739–50.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7.PubMedCrossRefGoogle Scholar
  66. 66.
    Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones (Athens). 2017;16(3):223–34.CrossRefGoogle Scholar
  67. 67.
    Brunkwall L, Orho-Melander M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia. 2017;60(6):943–51.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Park S, Bae JH. Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res. 2015;35(7):566–75.PubMedCrossRefGoogle Scholar
  70. 70.
    Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Le Barz M, Anhe FF, Varin TV, Desjardins Y, Levy E, Roy D, et al. Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J. 2015;39(4):291–303.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    McFarlin BK, Henning AL, Bowman EM, Gary MA, Carbajal KM. Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. World J Gastrointest Pathophysiol. 2017;8(3):117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Meijnikman AS, Gerdes VE, Nieuwdorp M, Herrema H. Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr Rev. 2018;39(2):133–53.PubMedCrossRefGoogle Scholar
  74. 74.
    • Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388–405 e21 This manuscript presents the role of inter-individual variations of gut microbiota on colonization efficacy of probiotics in human for the first time. PubMedCrossRefGoogle Scholar
  75. 75.
    Lira-Junior R, Bostrom EA. Oral-gut connection: one step closer to an integrated view of the gastrointestinal tract? Mucosal Immunol. 2018;11(2):316–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–66.PubMedCrossRefGoogle Scholar
  77. 77.
    Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A. 2006;103(3):732–7.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Blaser MJ. The microbiome revolution. J Clin Invest. 2014;124(10):4162–5.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Poveda-Roda R, Jimenez Y, Carbonell E, Gavalda C, Margaix-Munoz MM, Sarrion-Perez G. Bacteremia originating in the oral cavity. A review. Med Oral Patol Oral Cir Bucal. 2008;13(6):E355–62.PubMedGoogle Scholar
  81. 81.
    Menon T, Gopalakrishnan SN, Balasubramanian R, Justin SR. Characterisation of the human oral microbiome in patients with coronary artery disease using next-generation sequencing of 16SrRNA amplicons. Indian J Med Microbiol. 2017;35(1):101–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905.PubMedCrossRefGoogle Scholar
  83. 83.
    Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21(1):15–25.PubMedCrossRefGoogle Scholar
  84. 84.
    Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64.PubMedCrossRefGoogle Scholar
  85. 85.
    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bashir A, Miskeen AY, Hazari YM, Asrafuzzaman S, Fazili KM. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut. Tumour Biol. 2016;37(3):2805–10.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Ryder MI, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kojima A, Nakano K, Wada K, Takahashi H, Katayama K, Yoneda M, et al. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis. Sci Rep. 2012;2:332.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ayars GH, Altman LC, Fretwell MD. Effect of decreased salivation and pH on the adherence of Klebsiella species to human buccal epithelial cells. Infect Immun. 1982;38(1):179–82.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Barbosa FC, Mayer MP, Saba-Chujfi E, Cai S. Subgingival occurrence and antimicrobial susceptibility of enteric rods and pseudomonads from Brazilian periodontitis patients. Oral Microbiol Immunol. 2001;16(5):306–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science. 2017;358(6361):359–65.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Souto R, Colombo AP. Detection of Helicobacter pylori by polymerase chain reaction in the subgingival biofilm and saliva of non-dyspeptic periodontal patients. J Periodontol. 2008;79(1):97–103.PubMedCrossRefGoogle Scholar
  93. 93.
    Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26(4):781–91.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics—advances and challenges. Adv Drug Deliv Rev. 2016;105(Pt A):44–54.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Devinney R, et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):lee1971–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hiromichi Yumoto
    • 1
    Email author
  • Takashi Uebanso
    • 2
  • Takaaki Shimohata
    • 2
  • Akira Takahashi
    • 2
  1. 1.Department of Periodontology and Endodontology, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
  2. 2.Department of Preventive Environment and Nutrition, Institute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan

Personalised recommendations