Advertisement

Nutrition as Adjunct Therapy in Periodontal Disease Management

  • Benso Sulijaya
  • Naoki Takahashi
  • Kyoko Yamazaki
  • Kazuhisa YamazakiEmail author
Oral Disease and Nutrition (F Nishimura, Section Editor)
  • 3 Downloads
Part of the following topical collections:
  1. Topical Collection on Oral Disease and Nutrition

Abstract

Purpose of Review

Periodontal disease and its associated systemic diseases have gained public attention due to their increasing global prevalence. Still, the gold standard for the management of periodontitis is scaling and root planing (SRP). However, bacterial recolonization is considered a limitation of this approach. Further, the efficacy of adjunctive agents such as antibiotics, antimicrobials, and probiotics has been investigated extensively. Nowadays, drug resistance development due to antibiotics and antimicrobials abuse has become a global problem and our concern. In order to reduce the spread of drug resistance development, many investigations have been focused on the use of nutritional compounds rather than synthetic drugs for treating periodontitis, a relatively low-grade inflammatory disease. Moreover, if periodontitis is understood as a bacterial dysbiosis-induced inflammatory disease, then its treatment could be designed not only to eliminate periodontopathogens, but also to modify the host immune response. Therefore, this review will highlight the effectiveness of some pertinent nutrients towards periodontal condition.

Recent Findings

Nutrients are known to possess anti-inflammatory, antioxidant, and antimicrobial properties that maintain homeostasis. In vivo and in vitro studies have demonstrated the positive effects of nutrient intake on the maintenance and restoration of periodontal health. Vitamins, fatty acids, and probiotics are increasingly being found to have remarkable benefits and valuable properties.

Summary

Further, considering the oral-systemic connection, nutritional supplementation is encouraged as a possible adjunct therapy for the improvement of both oral and systemic health.

Keywords

Periodontal disease Periodontitis Nutrition Adjunctive therapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rinuchitra D, Govindarajan J, Thangavelu S, Jayaraman A. Kikuchi-Fujimoto’s disease and scrub typhus: a rare association. Brunei Int Med J. 2012;8(5):271–4.  https://doi.org/10.1080/20002297.2017.1340085.CrossRefGoogle Scholar
  2. 2.
    Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trens Mol Med. 2015;21:172–83.  https://doi.org/10.1016/j.molmed.2014.11.004.CrossRefGoogle Scholar
  3. 3.
    Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–19.  https://doi.org/10.1111/j.2041-1014.2012.00663.x.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol. 1992;63(4s):322–31.  https://doi.org/10.1902/jop.1992.63.4s.322.CrossRefPubMedGoogle Scholar
  5. 5.
    Van Dyke TE. The management of inflammation in periodontal disease. J Periodontol. 2008;79(8s):1601–8.  https://doi.org/10.1902/jop.2008.080173.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kornman KS, Newman MG, Alvarado R, Flemmig TF, Nachnani S, Tumbusch J. Clinical and microbiological patterns of adults with periodontitis. J Periodontol. 1991;62(10):634–42.  https://doi.org/10.1902/jop.1991.62.10.634.CrossRefPubMedGoogle Scholar
  7. 7.
    Van Dyke TE. Inflammation and periodontal diseases: a reappraisal. J Periodontol. 2008;79(8s):1501–2.  https://doi.org/10.1902/jop.2008.080279.CrossRefPubMedGoogle Scholar
  8. 8.
    Kinane DF, Preshaw PM, Loos BG. Host-response: understanding the cellular and molecular mechanisms of host-microbial interactions - consensus of the seventh European workshop on periodontology. J Clin Periodontol. 2011;38:44–8.  https://doi.org/10.1111/j.1600-051X.2010.01682.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90.  https://doi.org/10.1038/nrmicro2337.CrossRefPubMedGoogle Scholar
  10. 10.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.  https://doi.org/10.1128/JCM.43.11.5721-5732.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Armingohar Z, Jørgensen JJ, Kristoffersen AK, Abesha-Belay E, Olsen I. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014;6(1). Doi:  https://doi.org/10.3402/jom.v6.23408.CrossRefGoogle Scholar
  12. 12.
    Yamazaki K. The human microbiota and chronic disease. In: Luigi Nibali, Henderson B, editors. The human microbiota and chronic disease: dysbiosis as a cause of human pathology. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2016. Doi: https://doi.org/10.1002/9781118982907.Google Scholar
  13. 13.
    Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontol. 2011;55(1):36–47.  https://doi.org/10.1111/j.1600-0757.2010.00350.x.CrossRefGoogle Scholar
  14. 14.
    Mombelli A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol. 2018;76:85–96.  https://doi.org/10.1111/prd.12147.CrossRefGoogle Scholar
  15. 15.
    Soares GMS, Mendes JAV, Silva MP, Faveri M, Teles R, Socransky SS, et al. Metronidazole alone or with amoxicillin as adjuncts to non-surgical treatment of chronic periodontitis: a secondary analysis of microbiological results from a randomized clinical trial. J Clin Periodontol. 2014;41(4):366–76.  https://doi.org/10.1111/jcpe.12004.CrossRefPubMedGoogle Scholar
  16. 16.
    Petelin M, Perkič K, Seme K, Gašpirc B. Effect of repeated adjunctive antimicrobial photodynamic therapy on subgingival periodontal pathogens in the treatment of chronic periodontitis. Lasers Med Sci. 2015;30(6):1647–56.  https://doi.org/10.1007/s10103-014-1632-2.CrossRefPubMedGoogle Scholar
  17. 17.
    Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol. 2013;40(11):1025–35.  https://doi.org/10.1111/jcpe.12155.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rydén L, Buhlin K, Ekstrand E, De Faire U, Gustafsson A, Holmer J, et al. Periodontitis increases the risk of a first myocardial infarction: a report from the PAROKRANK study. Circulation. 2016;133(6):576–83.  https://doi.org/10.1161/CIRCULATIONAHA.115.020324.CrossRefPubMedGoogle Scholar
  19. 19.
    Artese HPC, Foz AM, Rabelo MDS, Gomes GH, Orlandi M, Suvan J, et al. Periodontal therapy and systemic inflammation in type 2 diabetes mellitus: a meta-analysis. PLoS One. 2015;10(5):e0128344.  https://doi.org/10.1371/journal.pone.0128344.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Michaud DS, Kelsey KT, Papathanasiou E, Genco CA, Giovannucci E. Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the health professionals follow-up study. Ann Oncol. 2016;27(5):941–7.  https://doi.org/10.1093/annonc/mdw028.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Massaro M, Scoditti E, Carluccio MA, De Caterina R. Nutraceuticals and prevention of atherosclerosis: focus on ω-3 polyunsaturated fatty acids and mediterranean diet polyphenols. Cardiovasc Ther. 2010;28(4):e13–9.  https://doi.org/10.1111/j.1755-5922.2010.00211.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Ansari S, Chauhan B, Kalam N, Kumar G. Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res. 2013;4(1):4–8.  https://doi.org/10.4103/2231-4040.107494.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Varela-López A, Bullón P, Giampieri F, Quiles J. Non-nutrient, naturally occurring phenolic compounds with antioxidant activity for the prevention and treatment of periodontal diseases. Antioxidants. 2015;4(3):447–81.  https://doi.org/10.3390/antiox4030447.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Padh H. Vitamin C. Newer insights into its biochemical functions. Nutr Rev. 1991;49(3):65–70.  https://doi.org/10.1111/j.1753-4887.1991.tb07407.x.CrossRefGoogle Scholar
  25. 25.
    Bergendi L, Beneš L, Ďuracková Z, Ferenčik M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999;65:1865–74.  https://doi.org/10.1016/S0024-3205(99)00439-7.CrossRefPubMedGoogle Scholar
  26. 26.
    Chapple ILC, Milward MR, Dietrich T. The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations. J Nutr. 2007;137(3):657–64.  https://doi.org/10.1093/jn/137.3.657.CrossRefPubMedGoogle Scholar
  27. 27.
    Van Der Velden U, Kuzmanova D, Chapple ILC. Micronutritional approaches to periodontal therapy. In: J Clin Periodontol. 2011;38:142–58.  https://doi.org/10.1111/j.1600-051X.2010.01663.x.CrossRefGoogle Scholar
  28. 28.
    Peterlik M, Cross HS. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur J Clin Nutr. 2009;63:1377–86.  https://doi.org/10.1038/ejcn.2009.105.CrossRefPubMedGoogle Scholar
  29. 29.
    Peterlik M. Vitamin D insufficiency and chronic diseases: hype and reality. Food Funct. 2012;3(8):784–94.  https://doi.org/10.1039/c2fo10262e.CrossRefPubMedGoogle Scholar
  30. 30.
    Akman S, Canakci V, Kara A, Tozoglu U, Arabaci T, Dagsuyu İM. Therapeutic effects of alpha lipoic acid and vitamin C on alveolar bone resorption after experimental periodontitis in rats: a biochemical, histochemical, and stereologic study. J Periodontol. 2013;84(5):666–74.  https://doi.org/10.1902/jop.2012.120252.CrossRefPubMedGoogle Scholar
  31. 31.
    Tomofuji T, Ekuni D, Sanbe T, Irie K, Azuma T, Maruyama T, et al. Effects of vitamin C intake on gingival oxidative stress in rat periodontitis. Free Radic Biol Med. 2009;46(2):163–8.  https://doi.org/10.1016/j.freeradbiomed.2008.09.040.CrossRefPubMedGoogle Scholar
  32. 32.
    Kuzmanova D, Jansen IDC, Schoenmaker T, Nazmi K, Teeuw WJ, Bizzarro S, et al. Vitamin C in plasma and leucocytes in relation to periodontitis. J Clin Periodontol. 2012;39(10):905–12.  https://doi.org/10.1111/j.1600-051X.2012.01927.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Nishida M, Grossi SG, Dunford RG, Ho AW, Trevisan M, Genco RJ. Dietary vitamin C and the risk for periodontal disease. J Periodontol. 2000;71(8):1215–23.  https://doi.org/10.1902/jop.2000.71.8.1215.CrossRefPubMedGoogle Scholar
  34. 34.
    •• Varela-López A, Navarro-Hortal MD, Giampieri F, Bullón P, Battino M, Quiles JL. Nutraceuticals in periodontal health: a systematic review on the role of vitamins in periodontal health maintenance. Molecules. 2018;23(5):1226.  https://doi.org/10.3390/molecules23051226 This manuscript demonstrates clear data on the impact of vitamins in maintaining periodontal health. CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29.  https://doi.org/10.1016/j.chembiol.2013.12.016.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fukumoto S. FGF23: phosphate metabolism and beyond. IBMS Bonekey. 2010;7(8):268–78.  https://doi.org/10.1138/20100458.CrossRefGoogle Scholar
  37. 37.
    Abreu OJ, Tatakis DN, Elias-Boneta AR, López Del Valle L, Hernandez R, Pousa MS, et al. Low vitamin D status strongly associated with periodontitis in Puerto Rican adults. BMC Oral Health. 2016;16(1):89.  https://doi.org/10.1186/s12903-016-0288-7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Boggess KA, Espinola JA, Moss K, Beck J, Offenbacher S, Camargo CA Jr. Vitamin D status and periodontal disease among pregnant women. J Periodontol. 2011;82(2):195–200.  https://doi.org/10.1902/jop.2010.100384.CrossRefPubMedGoogle Scholar
  39. 39.
    Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007;78(7s):1387–99.  https://doi.org/10.1902/jop.2007.060264.CrossRefPubMedGoogle Scholar
  40. 40.
    Millen AE, Hovey KM, LaMonte MJ, Swanson M, Andrews CA, Kluczynski MA, et al. Plasma 25-hydroxyvitamin D concentrations and periodontal disease in postmenopausal women. J Periodontol. 2013;84(9):1243–56.  https://doi.org/10.1902/jop.2012.120445.CrossRefPubMedGoogle Scholar
  41. 41.
    • Varela-López A, Battino M, Bullón P, Quiles JL. Dietary antioxidants for chronic periodontitis prevention and its treatment. A review on current evidences from animal and human studies. Ars Pharm. 2015;56(3):131–40.  https://doi.org/10.3390/antiox4030447 This manuscript represents clear data on how antioxidants affect in chronic periodontitis. CrossRefGoogle Scholar
  42. 42.
    Wong RSY, Radhakrishnan AK. Tocotrienol research: past into present. Nutr Rev. 2012;70(9):483–90.  https://doi.org/10.1111/j.1753-4887.2012.00512.x.CrossRefPubMedGoogle Scholar
  43. 43.
    Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radical Bio Med. 2007;43:4–15.  https://doi.org/10.1016/j.freeradbiomed.2007.03.024.CrossRefGoogle Scholar
  44. 44.
    Carvalho RDS, De Souza CM, Neves JCDS, Holanda-Pinto SA, Pinto LMS, Brito GAC, et al. Vitamin e does not prevent bone loss and induced anxiety in rats with ligature-induced periodontitis. Arch Oral Biol. 2013;58(1):50–8.  https://doi.org/10.1016/j.archoralbio.2012.04.020.CrossRefGoogle Scholar
  45. 45.
    Iwasaki M, Moynihan P, Manz MC, Taylor GW, Yoshihara A, Muramatsu K, et al. Dietary antioxidants and periodontal disease in community-based older Japanese: a 2-year follow-up study. Public Health Nutr. 2013;16(2):330–8.  https://doi.org/10.1017/S1368980012002637.CrossRefPubMedGoogle Scholar
  46. 46.
    Sun M, Dong J, Xia Y, Shu R. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans. Microb Pathog. 2017;107:212–8.  https://doi.org/10.1016/j.micpath.2017.03.040.CrossRefPubMedGoogle Scholar
  47. 47.
    Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85:1629–42.  https://doi.org/10.1007/s00253-009-2355-3.CrossRefPubMedGoogle Scholar
  48. 48.
    Correia M, Michel V, Matos AA, Carvalho P, Oliveira MJ, Ferreira RM, et al. Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. PLoS One. 2012;7(4):e35072.  https://doi.org/10.1371/journal.pone.0035072.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Miao L, Liu Y, Li Q, Wang Z, Li H, Zhang G. Screening and sequence analysis of the hemolysin gene of Fusobacterium necrophorum. Anaerobe. 2010;16(4):402–4.  https://doi.org/10.1016/j.anaerobe.2010.04.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141(3):272–82.  https://doi.org/10.1016/j.pharmthera.2013.10.010.CrossRefPubMedGoogle Scholar
  51. 51.
    Huang CB, Ebersole JL. A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Mol Oral Microbiol. 2010;25(1):75–80.  https://doi.org/10.1111/j.2041-1014.2009.00553.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–62.  https://doi.org/10.1111/j.1365-2125.2012.04374.x.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol. 2014;64(1):161–97.  https://doi.org/10.1111/j.1600-0757.2012.00458.x.CrossRefGoogle Scholar
  54. 54.
    Campan P. Pilot study on n-3 polyunsaturated fatty acids in the treatment of human experimental gingivitis. J Clin Periodontol. 1997;24(12):907–13.  https://doi.org/10.1111/j.1600-051X.1997.tb01210.x.CrossRefPubMedGoogle Scholar
  55. 55.
    Deore GD, Gurav AN, Patil R, Shete AR, Naiktari RS, Inamdar SP. Herbal anti-inflammatory immunomodulators as host modulators in chronic periodontitis patients: a randomised, double-blind, placebo-controlled, clinical trial. J Periodontal Implant Sci. 2014;44(2):71–8.  https://doi.org/10.5051/jpis.2014.44.2.71.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    El-Sharkawy H, Aboelsaad N, Eliwa M, Darweesh M, Alshahat M, Kantarci A, et al. Adjunctive treatment of chronic periodontitis with daily dietary supplementation with omega-3 fatty acids and low-dose aspirin. J Periodontol. 2010;81(11):1635–43.  https://doi.org/10.1902/jop.2010.090628.CrossRefPubMedGoogle Scholar
  57. 57.
    Naqvi AZ, Hasturk H, Mu L, Phillips RS, Davis RB, Halem S, et al. Docosahexaenoic acid and periodontitis in adults: a randomized controlled trial. J Dent Res. 2014;93(8):767–73.  https://doi.org/10.1177/0022034514541125.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Elkhouli AM. The efficacy of host response modulation therapy (omega-3 plus low-dose aspirin) as an adjunctive treatment of chronic periodontitis (clinical and biochemical study). J Periodontal Res. 2011;46(2):261–8.  https://doi.org/10.1111/j.1600-0765.2010.01336.x.CrossRefPubMedGoogle Scholar
  59. 59.
    • Keskiner I, Saygun I, Bal V, Serdar M, Kantarci A. Dietary supplementation with low-dose omega-3 fatty acids reduces salivary tumor necrosis factor-α levels in patients with chronic periodontitis: a randomized controlled clinical study. J Periodontal Res. 2017;52(4):695–703.  https://doi.org/10.1111/jre.12434 This manuscript represents clinical randomized trial study of omega-3 supplementation in chronic periodontitis without aspirin. CrossRefPubMedGoogle Scholar
  60. 60.
    Dyerberg J, Bang HO. Hæmostatic function and platelet polyunsaturated fatty acids in eskimos. Lancet. 1979;314(8140):433–5.  https://doi.org/10.1016/S0140-6736(79)91490-9.CrossRefGoogle Scholar
  61. 61.
    Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99(6A):22C–31C.  https://doi.org/10.1016/j.amjcard.2006.11.018.CrossRefPubMedGoogle Scholar
  62. 62.
    Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–57.  https://doi.org/10.1161/01.cir.0000038493.65177.94.CrossRefPubMedGoogle Scholar
  63. 63.
    Furumoto H, Nanthirudjanar T, Kume T, Izumi Y, Park SB, Kitamura N, et al. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicol Appl Pharmacol. 2016;296:1–9.  https://doi.org/10.1016/j.taap.2016.02.012.CrossRefPubMedGoogle Scholar
  64. 64.
    Yamada M, Takahashi N, Matsuda Y, Sato K, Yokoji M, Sulijaya B, et al. A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Sci Rep. 2018;8(1):9008.  https://doi.org/10.1038/s41598-018-27408-y.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kim M, Furuzono T, Yamakuni K, Li Y, Kim Y Il, Takahashi H, et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J. 2017;31(11):5036–48.  https://doi.org/10.1096/fj.201700151R.CrossRefGoogle Scholar
  66. 66.
    Sulijaya B, Takahashi N, Yamada M, Yokoji M, Sato K, Aoki-Nonaka Y, et al. The anti-inflammatory effect of 10-oxo-trans-11-octadecenoic acid (KetoC) on RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide. J Periodontal Res. 2018;53(5):777–84.  https://doi.org/10.1111/jre.12564.CrossRefPubMedGoogle Scholar
  67. 67.
    Yang HE, Li Y, Nishimura A, Jheng HF, Yuliana A, Kitano-Ohue R, et al. Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophage-mediated inflammation in adipocytes. Mol Nutr Food Res. 2017;61(10):1–13.  https://doi.org/10.1002/mnfr.201700064.CrossRefGoogle Scholar
  68. 68.
    Da Silva Pinto M. Tea: a new perspective on health benefits. Food Res Int. 2013;53:558–67.  https://doi.org/10.1016/j.jamcollsurg.2006.01.018.CrossRefGoogle Scholar
  69. 69.
    Kim JK. An update on the potential health benefits of carotenes. EXCLI J. 2015;15(1):1–4.  https://doi.org/10.17179/excli2015-664.CrossRefGoogle Scholar
  70. 70.
    Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43:89–143.  https://doi.org/10.1080/10408690390826464.CrossRefPubMedGoogle Scholar
  71. 71.
    Tipoe G, Leung T-M, Hung M-W, Fung M-L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Targets. 2007;7(2):135–44.  https://doi.org/10.2174/187152907780830905.CrossRefGoogle Scholar
  72. 72.
    Reygaert WC. The antimicrobial possibilities of green tea. Front Microbiol. 2014;5:434.  https://doi.org/10.3389/fmicb.2014.00434.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Cai Y, Chen Z, Liu H, Xuan Y, Wang X, Luan Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis-induced periodontitis in mice. Int Immunopharmacol. 2015;29(2):839–45.  https://doi.org/10.1016/j.intimp.2015.08.033.CrossRefPubMedGoogle Scholar
  74. 74.
    Fournier-Larente J, Morin MP, Grenier D. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis. Arch Oral Biol. 2016;65:35–43.  https://doi.org/10.1016/j.archoralbio.2016.01.014.CrossRefPubMedGoogle Scholar
  75. 75.
    Tsutsumi R, Yoshida T, Nii Y, Okahisa N, Iwata S, Tsukayama M, et al. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr Metab. 2014;11(1):32.  https://doi.org/10.1186/1743-7075-11-32.CrossRefGoogle Scholar
  76. 76.
    Gutiérrez-Venegas G, Torras-Ceballos A, Gómez-Mora JA, Fernández-Rojas B. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell Mol Biol Lett. 2017;22(1). Doi:  https://doi.org/10.1186/s11658-017-0047-z.
  77. 77.
    Bhattarai G, Poudel SB, Kook SH, Lee JC. Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. J Biomed Mater Res - Part A. 2017;105(9):2510–21.  https://doi.org/10.1002/jbm.a.36109.CrossRefGoogle Scholar
  78. 78.
    Ohyama Y, Ito J, Kitano VJ, Shimada J, Hakeda Y. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors. PLoS One. 2018;13(1):e0191192.  https://doi.org/10.1371/journal.pone.0191192.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Choi EY, Bae SH, Ha MH, Choe SH, Hyeon JY, Choi J Il, et al. Genistein suppresses Prevotella intermedia lipopolysaccharide-induced inflammatory response in macrophages and attenuates alveolar bone loss in ligature-induced periodontitis. Arch Oral Biol. 2016;62:70–9.  https://doi.org/10.1016/j.archoralbio.2015.11.019.CrossRefGoogle Scholar
  80. 80.
    McCarty MF, DiNicolantonio JJ, O’Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Hear. 2015;2(1):e000262.  https://doi.org/10.1136/openhrt-2015-000262.CrossRefGoogle Scholar
  81. 81.
    Zhou Y, Guan X, Zhu W, Liu Z, Wang X, Yu H, et al. Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis. Eur J Clin Microbiol Infect Dis. 2014;33(2):211–9.  https://doi.org/10.1007/s10096-013-1947-0.CrossRefPubMedGoogle Scholar
  82. 82.
    Takahashi N, Matsuda Y, Sato K, De Jong PR, Bertin S, Tabeta K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci Rep. 2016;6:29294.  https://doi.org/10.1038/srep29294.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chang WL, Cheng FC, Wang SP, Chou ST, Shih Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. Environ Toxicol. 2017;32(2):456–68.  https://doi.org/10.1002/tox.22250.CrossRefPubMedGoogle Scholar
  84. 84.
    Mendes SJF, Sousa FIAB, Pereira DMS, Ferro TAF, Pereira ICP, Silva BLR, et al. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms. Int Immunopharmacol. 2016;34:60–70.  https://doi.org/10.1016/j.intimp.2016.02.012.CrossRefPubMedGoogle Scholar
  85. 85.
    Yang XQ, Zheng H, Ye Q, Li RY, Chen Y. Essential oil of cinnamon exerts anti-cancer activity against head and neck squamous cell carcinoma via attenuating epidermal growth factor receptor - tyrosine kinase. J BUON. 2015;20(6):1518–25.PubMedGoogle Scholar
  86. 86.
    Wang Y, Zhang Y, Shi Y q, Pan X h, Lu Y h, Cao P. Antibacterial effects of cinnamon (Cinnamomum zeylanicum) bark essential oil on Porphyromonas gingivalis. Microb Pathog. 2018;116:26–32.  https://doi.org/10.1002/ptr.5822.CrossRefPubMedGoogle Scholar
  87. 87.
    Pei RS, Zhou F, Ji BP, Xu J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci. 2009;74(7).  https://doi.org/10.1111/j.1750-3841.2009.01287.x.CrossRefGoogle Scholar
  88. 88.
    Al-Zahrani MS. Increased intake of dairy products is related to lower periodontitis prevalence. J Periodontol. 2006;77(2):289–94.  https://doi.org/10.1902/jop.2006.050082.CrossRefPubMedGoogle Scholar
  89. 89.
    Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5(5):765–75.  https://doi.org/10.1111/1758-2229.12079.CrossRefPubMedGoogle Scholar
  90. 90.
    Singh VP, Sharma J, Babu S, Rizwanulla, Singla A. Role of probiotics in health and disease: a review. J Pak Med Assoc 2013;63(2):253–257.Google Scholar
  91. 91.
    Kim HS, Kim YY, Oh JK, Bae KH. Is yogurt intake associated with periodontitis due to calcium?, PLoS One. 2017;12(10).  https://doi.org/10.1371/journal.pone.0187258.CrossRefGoogle Scholar
  92. 92.
    Slawik S, Staufenbiel I, Schilke R, Nicksch S, Weinspach K, Stiesch M, et al. Probiotics affect the clinical inflammatory parameters of experimental gingivitis in humans. Eur J Clin Nutr. 2011;65(7):857–63.  https://doi.org/10.1038/ejcn.2011.45.CrossRefPubMedGoogle Scholar
  93. 93.
    Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson Å, Sinkiewicz G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J. 2006;30(2):55–60.PubMedGoogle Scholar
  94. 94.
    Lahner E, Bellisario C, Hassan C, Zullo A, Esposito G, Annibale B. Probiotics in the treatment of diverticular disease. A systematic review. J Gastrointest Liver Dis. 2016;25(1):79–86.  https://doi.org/10.15403/jgld.2014.1121.251.srw.CrossRefGoogle Scholar
  95. 95.
    Abe-Yutori M, Chikazawa T, Shibasaki K, Murakami S. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res. 2017;52(1):42–50.  https://doi.org/10.1111/jre.12367.CrossRefPubMedGoogle Scholar
  96. 96.
    Riccia DND, Bizzini F, Perilli MG, Polimeni A, Trinchieri V, Amicosante G, et al. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis. 2007;13(4):376–85.  https://doi.org/10.1111/j.1601-0825.2006.01291.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benso Sulijaya
    • 1
    • 2
    • 3
  • Naoki Takahashi
    • 4
  • Kyoko Yamazaki
    • 1
  • Kazuhisa Yamazaki
    • 1
    Email author
  1. 1.Research Unit for Oral-Systemic Connection, Division of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  2. 2.Division of PeriodontologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
  3. 3.Department of Periodontology, Faculty of DentistryUniversitas IndonesiaJakartaIndonesia
  4. 4.Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental SciencesNiigataJapan

Personalised recommendations