Advertisement

Current Developments on Enamel and Dentin Remineralization

  • Roberto Ruggiero BragaEmail author
  • Stefan Habelitz
Dental Restorative Materials (M Özcan and P Cesar, Section Editor)
  • 2 Downloads
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials

Abstract

Purpose of Review

To present an overview of the ongoing research on enamel and dentin remineralization and to describe particle-mediated and biomimetic approaches. The importance of restoring tissue functionality as the ultimate goal of remineralization is emphasized.

Recent Findings

Calcium-releasing particles and adjuvants to increase fluoride uptake by enamel are described in the literature. In order to recover the prismatic structure in mineral-depleted enamel, amelogenin-derived peptides and amelogenin analogues have been proposed as templates for apatite deposition. In dentin, mineral deposition per se is not enough to recover the mechanical properties, and the use of biomimetic analogs is necessary to guide apatite formation into the collagen intrafibrillar spaces.

Summary

The use of biomimetic analogues associated with ion-releasing materials seems a promising approach for both enamel and dentin remineralization. Clinical translational protocols are still premature and have, so far, only been explored experimentally in vitro, with good outcomes particularly on structural and functional repair of artificial dentin carious lesions.

Keywords

Dentin remineralization Enamel remineralization Functional remineralization Biomimetic remineralization Biomimetic analogues Fluoride 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Braga declares no conflicts of interest. Dr. Habelitz reports no conflicts of interest. In addition, Dr. Habelitz has a patent on compositions for the remineralization of dentin pending and not licensed.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc. 2003;134(1):87–95.  https://doi.org/10.14219/jada.archive.2003.0021.CrossRefPubMedGoogle Scholar
  2. 2.
    •• Innes NPT, Chu CH, Fontana M, Lo ECM, Thomson WM, Uribe S, et al. A century of change towards prevention and minimal intervention in cardiology. J Dent Res. 2019;98(6):611–7.  https://doi.org/10.1177/0022034519837252This paper summarizes adaptation in caries management and restorative treatments which mostly occurred in the last 20 to 30 years and were leading to the concept of minimally-invasive dentistry which emphasizes tissue repair and conservation over surgical removal. CrossRefPubMedGoogle Scholar
  3. 3.
    Gao SS, Zhang S, Mei ML, Lo EC, Chu CH. Caries remineralisation and arresting effect in children by professionally applied fluoride treatment - a systematic review. BMC Oral Health. 2016;16:12.  https://doi.org/10.1186/s12903-016-0171-6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lenzi TL, Montagner AF, Soares FZ, de Oliveira Rocha R. Are topical fluorides effective for treating incipient carious lesions?: a systematic review and meta-analysis. J Am Dent Assoc. 2016;147(2):84–91 e1.  https://doi.org/10.1016/j.adaj.2015.06.018.CrossRefPubMedGoogle Scholar
  5. 5.
    Li X, Wang J, Joiner A, Chang J. The remineralisation of enamel: a review of the literature. J Dent. 2014;42(Suppl 1):S12–20.  https://doi.org/10.1016/S0300-5712(14)50003-6.CrossRefPubMedGoogle Scholar
  6. 6.
    Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2018;53(3):284–95.  https://doi.org/10.1159/000493031.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Melo MA, Weir MD, Rodrigues LK, Xu HH. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater. 2013;29(2):231–40.  https://doi.org/10.1016/j.dental.2012.10.010.CrossRefPubMedGoogle Scholar
  8. 8.
    Souza JG, Tenuta LM, Del Bel Cury AA, Nobrega DF, Budin RR, de Queiroz MX, et al. Calcium prerinse before fluoride rinse reduces enamel demineralization: an in situ caries study. Caries Res. 2016;50(4):372–7.  https://doi.org/10.1159/000446407.CrossRefPubMedGoogle Scholar
  9. 9.
    Meyer-Lueckel H, Wierichs RJ, Schellwien T, Paris S. Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ. Caries Res. 2015;49(1):56–62.  https://doi.org/10.1159/000363073.CrossRefPubMedGoogle Scholar
  10. 10.
    Gonzalez-Cabezas C, Fernandez CE. Recent advances in remineralization therapies for caries lesions. Adv Dent Res. 2018;29(1):55–9.  https://doi.org/10.1177/0022034517740124.CrossRefPubMedGoogle Scholar
  11. 11.
    Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent. 2017;67:9–17.  https://doi.org/10.1016/j.jdent.2017.09.007.CrossRefPubMedGoogle Scholar
  12. 12.
    Parkinson CR, Siddiqi M, Mason S, Lippert F, Hara AT, Zero DT. Anticaries potential of a sodium monofluorophosphate dentifrice containing calcium sodium phosphosilicate: exploratory in situ randomized trial. Caries Res. 2017;51(2):170–8.  https://doi.org/10.1159/000453622.CrossRefPubMedGoogle Scholar
  13. 13.
    Alania Y, Natale LC, Nesadal D, Vilela H, Magalhaes AC, Braga RR. In vitro remineralization of artificial enamel caries with resin composites containing calcium phosphate particles. J Biomed Mater Res B Appl Biomater. 2018.  https://doi.org/10.1002/jbm.b.34246.CrossRefGoogle Scholar
  14. 14.
    Langhorst SE, O'Donnell JN, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater. 2009;25(7):884–91.  https://doi.org/10.1016/j.dental.2009.01.094.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pinto MFC, Alania Y, Natale LC, Magalhaes AC, Braga RR. Effect of bioactive composites on microhardness of enamel exposed to carious challenge. Eur J Prosthodont Restor Dent. 2018;26(3):122–8.  https://doi.org/10.1922/EJPRD_01781Pinto07.CrossRefPubMedGoogle Scholar
  16. 16.
    • Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater. 2019;35(1):3–14.  https://doi.org/10.1016/j.dental.2018.08.288A recent review written by one of the authors discussing the use of calcium orthophosphates particles as additives in restorative resin-based materials. CrossRefPubMedGoogle Scholar
  17. 17.
    Krishnan V, Bhatia A, Varma H. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration. Dent Mater. 2016;32(5):646–59.  https://doi.org/10.1016/j.dental.2016.02.002.CrossRefPubMedGoogle Scholar
  18. 18.
    Souza BM, Comar LP, Vertuan M, Fernandes Neto C, Buzalaf MA, Magalhaes AC. Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res. 2015;49(5):499–507.  https://doi.org/10.1159/000438466.CrossRefPubMedGoogle Scholar
  19. 19.
    Lelli M, Putignano A, Marchetti M, Foltran I, Mangani F, Procaccini M, et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study. Front Physiol. 2014;5:333.  https://doi.org/10.3389/fphys.2014.00333.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shen P, Walker GD, Yuan Y, Reynolds C, Stanton DP, Fernando JR, et al. Importance of bioavailable calcium in fluoride dentifrices for enamel remineralization. J Dent. 2018;78:59–64.  https://doi.org/10.1016/j.jdent.2018.08.005.CrossRefPubMedGoogle Scholar
  21. 21.
    Lippert F, Gill KK. Carious lesion remineralizing potential of fluoride- and calcium-containing toothpastes: A laboratory study. J Am Dent Assoc. 2019.  https://doi.org/10.1016/j.adaj.2018.11.022.CrossRefGoogle Scholar
  22. 22.
    Karlinsey RL, Pfarrer AM. Fluoride plus functionalized beta-TCP: a promising combination for robust remineralization. Adv Dent Res. 2012;24(2):48–52.  https://doi.org/10.1177/0022034512449463.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thilo E. The structural chemistry of condensed inorganic phosphates. Angew Chem Int Ed Engl. 1965;4(12):1061–71.  https://doi.org/10.1002/anie.196510611.CrossRefGoogle Scholar
  24. 24.
    Danelon M, Takeshita EM, Peixoto LC, Sassaki KT, Delbem ACB. Effect of fluoride gels supplemented with sodium trimetaphosphate in reducing demineralization. Clin Oral Investig. 2014;18(4):1119–27.  https://doi.org/10.1007/s00784-013-1102-4.CrossRefPubMedGoogle Scholar
  25. 25.
    Manarelli MM, Delbem AC, Lima TM, Castilho FC, Pessan JP. In vitro remineralizing effect of fluoride varnishes containing sodium trimetaphosphate. Caries Res. 2014;48(4):299–305.  https://doi.org/10.1159/000356308.CrossRefPubMedGoogle Scholar
  26. 26.
    Goncalves FMC, Delbem ACB, Pessan JP, Nunes GP, Emerenciano NG, Garcia LSG, et al. Remineralizing effect of a fluoridated gel containing sodium hexametaphosphate: an in vitro study. Arch Oral Biol. 2018;90:40–4.  https://doi.org/10.1016/j.archoralbio.2018.03.001.CrossRefPubMedGoogle Scholar
  27. 27.
    Manarelli MM, Delbem AC, Binhardi TD, Pessan JP. In situ remineralizing effect of fluoride varnishes containing sodium trimetaphosphate. Clin Oral Investig. 2015;19(8):2141–6.  https://doi.org/10.1007/s00784-015-1492-6.CrossRefPubMedGoogle Scholar
  28. 28.
    Takeshita EM, Danelon M, Castro LP, Cunha RF, Delbem AC. Remineralizing potential of a low fluoride toothpaste with sodium trimetaphosphate: an in situ study. Caries Res. 2016;50(6):571–8.  https://doi.org/10.1159/000449358.CrossRefPubMedGoogle Scholar
  29. 29.
    Danelon M, Garcia LG, Pessan JP, Passarinho A, Camargo ER, Delbem ACB. Effect of fluoride toothpaste containing nano-sized sodium hexametaphosphate on enamel remineralization: an in situ study. Caries Res. 2018;53(3):260–7.  https://doi.org/10.1159/000491555.CrossRefPubMedGoogle Scholar
  30. 30.
    Lv X, Yang Y, Han S, Li D, Tu H, Li W, et al. Potential of an amelogenin based peptide in promoting remineralization of initial enamel caries. Arch Oral Biol. 2015;60(10):1482–7.  https://doi.org/10.1016/j.archoralbio.2015.07.010.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen M, Yang J, Li J, Liang K, He L, Lin Z, et al. Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater. 2014;10(10):4437–46.  https://doi.org/10.1016/j.actbio.2014.05.016.CrossRefPubMedGoogle Scholar
  32. 32.
    Brookes SJ, Robinson C, Kirkham J, Bonass WA. Biochemistry and molecular biology of amelogenin proteins of developing dental enamel. Arch Oral Biol. 1995;40(1):1–14.  https://doi.org/10.1016/0003-9969(94)00135-X.CrossRefPubMedGoogle Scholar
  33. 33.
    Zheng W, Ding L, Wang Y, Han S, Zheng S, Guo Q, et al. The effects of 8DSS peptide on remineralization in a rat model of enamel caries evaluated by two nondestructive techniques. J Appl Biomater Funct Mater. 2019;17(1):2280800019827798.  https://doi.org/10.1177/2280800019827798.CrossRefPubMedGoogle Scholar
  34. 34.
    Yang Y, Lv XP, Shi W, Li JY, Li DX, Zhou XD, et al. 8DSS-promoted remineralization of initial enamel caries in vitro. J Dent Res. 2014;93(5):520–4.  https://doi.org/10.1177/0022034514522815.CrossRefPubMedGoogle Scholar
  35. 35.
    Hammarstrom L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol. 1997;24(9 Pt 2):669–77.CrossRefGoogle Scholar
  36. 36.
    Cao Y, Mei ML, Li QL, Lo EC, Chu CH. Enamel prism-like tissue regeneration using enamel matrix derivative. J Dent. 2014;42(12):1535–42.  https://doi.org/10.1016/j.jdent.2014.08.014.CrossRefPubMedGoogle Scholar
  37. 37.
    Han S, Fan Y, Zhou Z, Tu H, Li D, Lv X, et al. Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model. Arch Oral Biol. 2017;73:66–71.  https://doi.org/10.1016/j.archoralbio.2016.09.009.CrossRefPubMedGoogle Scholar
  38. 38.
    Bagheri GH, Sadr A, Espigares J, Hariri I, Nakashima S, Hamba H, et al. Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindentation. Biomed Mater. 2015;10(3):035007.  https://doi.org/10.1088/1748-6041/10/3/035007.CrossRefGoogle Scholar
  39. 39.
    Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–30.  https://doi.org/10.1177/154405910708600507.CrossRefPubMedGoogle Scholar
  40. 40.
    • Kind L, Stevanovic S, Wuttig S, Wimberger S, Hofer J, Muller B, et al. Biomimetic remineralization of carious lesions by self-assembling peptide. J Dent Res. 2017;96(7):790–7.  https://doi.org/10.1177/0022034517698419A well-conducted investigation on the use of self-assembling peptides for enamel remineralization. CrossRefPubMedGoogle Scholar
  41. 41.
    Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH. Self-assembling peptide P11-4 and fluoride for regenerating enamel. J Dent Res. 2018;97(2):148–54.  https://doi.org/10.1177/0022034517730531.CrossRefPubMedGoogle Scholar
  42. 42.
    Schlee M, Schad T, Koch JH, Cattin PC, Rathe F. Clinical performance of self-assembling peptide P11 -4 in the treatment of initial proximal carious lesions: a practice-based case series. J Investig Clin Dent. 2018;9(1).  https://doi.org/10.1111/jicd.12286.
  43. 43.
    Silvertown JD, Wong BPY, Sivagurunathan KS, Abrams SH, Kirkham J, Amaechi BT. Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence. J Investig Clin Dent. 2017;8(4):e12257.  https://doi.org/10.1111/jicd.12257.CrossRefGoogle Scholar
  44. 44.
    Takahashi F, Kurokawa H, Shibasaki S, Kawamoto R, Murayama R, Miyazaki M. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand. 2016;74(2):142–7.  https://doi.org/10.3109/00016357.2015.1066850.CrossRefPubMedGoogle Scholar
  45. 45.
    Wierichs RJ, Kogel J, Lausch J, Esteves-Oliveira M, Meyer-Lueckel H. Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Caries Res. 2017;51(5):451–9.  https://doi.org/10.1159/000477215.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen L, Yuan H, Tang B, Liang K, Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro. Caries Res. 2015;49(3):282–90.  https://doi.org/10.1159/000375376.CrossRefPubMedGoogle Scholar
  47. 47.
    Deshpande AS, Fang PA, Zhang X, Jayaraman T, Sfeir C, Beniash E. Primary structure and phosphorylation of dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules. 2011;12(8):2933–45.  https://doi.org/10.1021/bm2005214.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82(12):957–61.  https://doi.org/10.1177/154405910308201204.CrossRefPubMedGoogle Scholar
  49. 49.
    Olszta MJ, Cheng XG, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. Bone structure and formation: a new perspective. Mater Sci Eng R-Rep. 2007;58(3-5):77–116.CrossRefGoogle Scholar
  50. 50.
    Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010;9(12):1004–9.  https://doi.org/10.1038/nmat2875.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, et al. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77–96.  https://doi.org/10.1016/j.dental.2013.07.013.CrossRefPubMedGoogle Scholar
  52. 52.
    Burwell AK, Thula-Mata T, Gower LB, Habelitz S, Kurylo M, Ho SP, et al. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One. 2012;7(6):e38852.  https://doi.org/10.1371/journal.pone.0038852.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bertassoni LE, Habelitz S, Marshall SJ, Marshall GW. Mechanical recovery of dentin following remineralization in vitro--an indentation study. J Biomech. 2011;44(1):176–81.  https://doi.org/10.1016/j.jbiomech.2010.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    ten Cate JM. Remineralization of caries lesions extending into dentin. J Dent Res. 2001;80(5):1407–11.  https://doi.org/10.1177/00220345010800050401.CrossRefPubMedGoogle Scholar
  55. 55.
    Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–70.  https://doi.org/10.1016/j.dental.2015.01.004.CrossRefPubMedGoogle Scholar
  56. 56.
    Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW Jr. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009;43(1):70–7.  https://doi.org/10.1159/000201593.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ryou H, Turco G, Breschi L, Tay FR, Pashley DH, Arola D. On the stiffness of demineralized dentin matrices. Dent Mater. 2016;32(2):161–70.  https://doi.org/10.1016/j.dental.2015.11.029.CrossRefPubMedGoogle Scholar
  58. 58.
    Mukai Y, ten Cate JM. Remineralization of advanced root dentin lesions in vitro. Caries Res. 2002;36(4):275–80.  https://doi.org/10.1159/000063924.CrossRefPubMedGoogle Scholar
  59. 59.
    Ten Cate JM, Buzalaf MAR. Fluoride mode of action: once there was an observant dentist. J Dent Res. 2019;98(7):725–30.  https://doi.org/10.1177/0022034519831604.CrossRefPubMedGoogle Scholar
  60. 60.
    Qi YP, Li N, Niu LN, Primus CM, Ling JQ, Pashley DH, et al. Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater. 2012;8(2):836–42.  https://doi.org/10.1016/j.actbio.2011.10.033.CrossRefPubMedGoogle Scholar
  61. 61.
    Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014;30(1):50–61.  https://doi.org/10.1016/j.dental.2013.08.202.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kim YK, Yiu CK, Kim JR, Gu L, Kim SK, Weller RN, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res. 2010;89(3):230–5.  https://doi.org/10.1177/0022034509357172.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF, et al. Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J Dent Res. 2015;94(4):562–8.  https://doi.org/10.1177/0022034515571415.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Schwendicke F, Al-Abdi A, Pascual Moscardo A, Ferrando Cascales A, Sauro S. Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions. Dent Mater. 2019;35(5):772–9.  https://doi.org/10.1016/j.dental.2019.02.021.CrossRefPubMedGoogle Scholar
  65. 65.
    Sauro S, Watson T, Moscardo AP, Luzi A, Feitosa VP, Banerjee A. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements. J Dent. 2018;73:32–9.  https://doi.org/10.1016/j.jdent.2018.03.014.CrossRefPubMedGoogle Scholar
  66. 66.
    Deshpande AS, Beniash E. Bio-inspired synthesis of mineralized collagen fibrils. Cryst Growth Des. 2008;8(8):3084–90.CrossRefGoogle Scholar
  67. 67.
    Olszta MJ, Odom DJ, Douglas EP, Gower LB. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44(Suppl 1):326–34.CrossRefGoogle Scholar
  68. 68.
    Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev. 2008;108(11):4551–627.CrossRefGoogle Scholar
  69. 69.
    Saeki K, Chien YC, Nonomura G, Chin AF, Habelitz S, Gower LB, et al. Recovery after PILP remineralization of dentin lesions created with two cariogenic acids. Arch Oral Biol. 2017;82:194–202.  https://doi.org/10.1016/j.archoralbio.2017.06.006.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rodriguez DE, Thula-Mata T, Toro EJ, Yeh YW, Holt C, Holliday LS, et al. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater. 2014;10(1):494–507.  https://doi.org/10.1016/j.actbio.2013.10.010.CrossRefPubMedGoogle Scholar
  71. 71.
    Niu LN, Jee SE, Jiao K, Tonggu L, Li M, Wang L, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater. 2017;16(3):370–8.  https://doi.org/10.1038/nmat4789.CrossRefPubMedGoogle Scholar
  72. 72.
    Ryou H, Niu LN, Dai L, Pucci CR, Arola DD, Pashley DH, et al. Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. J Dent Res. 2011;90(9):1122–8.  https://doi.org/10.1177/0022034511414059.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sarem M, Ludeke S, Thomann R, Salavei P, Zou Z, Habraken W, et al. Disordered conformation with low Pii helix in phosphoproteins orchestrates biomimetic apatite formation. Adv Mater. 2017;29(35).  https://doi.org/10.1002/adma.201701629.CrossRefGoogle Scholar
  74. 74.
    Liu Y, Tjaderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res. 2011;90(8):953–68.  https://doi.org/10.1177/0022034510391799.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tjaderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-a review. Dent Mater. 2013;29(10):999–1011.  https://doi.org/10.1016/j.dental.2013.07.016.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    • Bacino M, Girn V, Nurrohman H, Saeki K, Marshall SJ, Gower L, et al. Integrating the PILP-mineralization process into a restorative dental treatment. Dent Mater. 2019;35(1):53–63.  https://doi.org/10.1016/j.dental.2018.11.030This study proposes methods on how to incorporate process-directing agents into a restorative material to induce functional remineralization of dentin caries. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomaterials and Oral BiologyUniversity of São Paulo School of DentistrySão PauloBrazil
  2. 2.Department of Preventive and Restorative Dental SciencesUniversity of California San Francisco School of DentistrySan FranciscoUSA

Personalised recommendations