Advertisement

Contemporary CAD/CAM Materials in Dentistry

  • Janine Tiu
  • Renan Belli
  • Ulrich LohbauerEmail author
Dental Restorative Materials (M Özcan and P Cesar, Section Editors)
  • 6 Downloads
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials

Abstract

Purpose of Review

To present an update on the current CAD/CAM materials in restorative dentistry.

Recent Findings

Important contributions are seen in updated mechanical properties of CAD/CAM materials, new insights in lithium silicate systems, and development in translucent zirconia. Many materials are arriving at optimized processing procedures and further development will come from new strategies and systems. Increasing our understanding of CAD/CAM materials will improve their use and indications and drive innovation.

Summary

A general update was provided by classifications, mechanical properties, and clinical considerations by providing commentary on recent significant contributions.

Keywords

CAD/CAM Dental restorative materials Mechanical properties Glass-ceramics Zirconia 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Moörmann WH. The evolution of the CEREC system. J Am Dent Assoc. 2006;137:7S–13S.  https://doi.org/10.14219/jada.archive.2006.0398.CrossRefGoogle Scholar
  2. 2.
    Patzelt SB, Emmanouilidi A, Stampf S, Strub JR, Att W. Accuracy of full-arch scans using intraoral scanners. Clin Oral Investig. 2014;18(6):1687–94.  https://doi.org/10.1007/s00784-013-1132-y.CrossRefPubMedGoogle Scholar
  3. 3.
    Logozzo S, Zanetti EM, Franceschini G, Kilpelä A, Mäkynen A. Recent advances in dental optics–Part I: 3D intraoral scanners for restorative dentistry. Opt Lasers Eng. 2014;54:203–21.  https://doi.org/10.1016/j.optlaseng.2013.07.017.CrossRefGoogle Scholar
  4. 4.
    Williams R, Bibb R, Eggbeer D, Collis J. Use of CAD/CAM technology to fabricate a removable partial denture framework. J Prosthet Dent. 2006;96(2):96–9.  https://doi.org/10.1016/j.prosdent.2006.05.029.CrossRefPubMedGoogle Scholar
  5. 5.
    Hamza TA, Ezzat HA, El-Hossary MMK, Katamish HAEM, Shokry TE, Rosenstiel SF. Accuracy of ceramic restorations made with two CAD/CAM systems. J Prosthet Dent. 2013;109(2):83–7.  https://doi.org/10.1016/S0022-3913(13)60020-7.CrossRefPubMedGoogle Scholar
  6. 6.
    Kohorst P, Junghanns J, Dittmer MP, Borchers L, Stiesch M. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy. Clin Oral Investig. 2011;15(4):527–36.  https://doi.org/10.1007/s00784-010-0415-9.CrossRefPubMedGoogle Scholar
  7. 7.
    Sorensen J, Choi C, Fanuscu M, Mito W. IPS Empress crown system: three-year clinical trial results. J Cal Dent Assoc. 1998;26(2):130–6.Google Scholar
  8. 8.
    Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater. 2004;20(5):441–8.  https://doi.org/10.1016/j.dental.2003.05.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent. 2004;92(6):557–62.  https://doi.org/10.1016/j.prosdent.2004.09.015.CrossRefPubMedGoogle Scholar
  10. 10.
    Hickel R, Manhart J. Longevity of restorations in posterior teeth and reasons for failure. J Adhes Dent. 2001;3(1):45–64.Google Scholar
  11. 11.
    Mainjot A, Dupont N, Oudkerk J, Dewael T, Sadoun M. From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res. 2016;95(5):487–95.  https://doi.org/10.1177/0022034516634286.CrossRefPubMedGoogle Scholar
  12. 12.
    Söderholm KJ, Mariotti A. BIS-GMA–based resins in dentistry: are they safe? J Am Dent Assoc. 1999;130(2):201–9.  https://doi.org/10.14219/jada.archive.1999.0169.CrossRefPubMedGoogle Scholar
  13. 13.
    Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater. 2005;21(12):1150–7.  https://doi.org/10.1016/j.dental.2005.02.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Ruyter I, Nilner K, Möller B. Color stability of dental composite resin materials for crown and bridge veneers. Dent Mater. 1987;3(5):246–51.  https://doi.org/10.1016/S0109-5641(87)80081-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Ferracane JL. Resin composite—state of the art. Dent Mater. 2011;27(1):29–38.  https://doi.org/10.1016/j.dental.2010.10.020.CrossRefPubMedGoogle Scholar
  16. 16.
    Nguyen J, Ruse D, Phan A, Sadoun M. High-temperature-pressure polymerized resin-infiltrated ceramic networks. J Dent Res. 2014;93(1):62–7.  https://doi.org/10.1177/0022034513511972.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    •• Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33(1):99–109.  https://doi.org/10.1016/j.dental.2016.10.008Recent mechanical testing using the B3B-test. CrossRefPubMedGoogle Scholar
  18. 18.
    Belli R, Wendler M, Petschelt A, Lube T, Lohbauer U. Fracture toughness testing of biomedical ceramic-based materials using beams, plates and discs. J Eur Ceram Soc. 2018;38(16):5533–44.  https://doi.org/10.1016/j.jeurceramsoc.2018.08.012.CrossRefGoogle Scholar
  19. 19.
    Li W, Sun J. Effects of ceramic density and sintering temperature on the mechanical properties of a novel polymer-infiltrated ceramic-network zirconia dental restorative (filling) material. Med Sci Monit. 2018;24:3068–76.  https://doi.org/10.12659/msm.907097.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cui B, Li J, Wang H, Lin Y, Shen Y, Li M, et al. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration. J Dent. 2017;62:91–7.  https://doi.org/10.1016/j.jdent.2017.05.009.CrossRefPubMedGoogle Scholar
  21. 21.
    Eldafrawy M, Nguyen J-F, Mainjot A, Sadoun M. A functionally graded PICN material for biomimetic CAD-CAM blocks. J Dent Res. 2018;97(12):1324–30.  https://doi.org/10.1177/0022034518785364.CrossRefPubMedGoogle Scholar
  22. 22.
    Al-Jawoosh S, Ireland A, Su B. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material. Dent Mater. 2018;34(7):994–1002.  https://doi.org/10.1016/j.dental.2018.03.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Petrini M, Ferrante M, Su B. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration. Dent Mater. 2013;29(4):375–81.  https://doi.org/10.1016/j.dental.2012.12.004.CrossRefPubMedGoogle Scholar
  24. 24.
    Kelly JR. Dental ceramics: what is this stuff anyway? J Am Dent Assoc. 2008;139:S4–7.  https://doi.org/10.14219/jada.archive.2008.0359.CrossRefGoogle Scholar
  25. 25.
    •• Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, et al. Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33(1):84–98.  https://doi.org/10.1016/j.dental.2016.10.009Important contributions in elastic constants of CAD/CAM materials. CrossRefPubMedGoogle Scholar
  26. 26.
    Hurle K, Belli R, Götz-Neunhoeffer F, Lohbauer U. Phase characterization of lithium silicate biomedical glass-ceramics produced by two-stage crystallization. J Non-Cryst Solids. 2019;510:42–50.  https://doi.org/10.1016/j.jnoncrysol.2019.01.027.CrossRefGoogle Scholar
  27. 27.
    Santos GG, Serbena FC, Fokin VM, Zanotto ED. Microstructure and mechanical properties of nucleant-free Li2O-CaO-SiO2 glass-ceramics. Acta Mater. 2017;130:347–60.  https://doi.org/10.1016/j.actamat.2017.03.010.CrossRefGoogle Scholar
  28. 28.
    Belli R, Lohbauer U, Goetz-Neunhoeffer F, Hurle K. Crack-healing during two-stage crystallization of biomedical lithium (di) silicate glass-ceramics. Dent Mater. 2019;35:1130–45.  https://doi.org/10.1016/j.dental.2019.05.013.CrossRefPubMedGoogle Scholar
  29. 29.
    Belli R, Petschelt A, Hofner B, Hajtó J, Scherrer S, Lohbauer U. Fracture rates and lifetime estimations of CAD/CAM all-ceramic restorations. J Dent Res. 2016;95(1):67–73.  https://doi.org/10.1177/0022034515608187.CrossRefPubMedGoogle Scholar
  30. 30.
    Gali S, Ravikumar K, Murthy BVS, Basu B. Zirconia toughened mica glass ceramics for dental restorations. Dent Mater. 2018;34(3):E36–45.  https://doi.org/10.1016/j.dental.2018.01.009.CrossRefPubMedGoogle Scholar
  31. 31.
    Li D, Guo J, Wang X, Zhang S, He L. Effects of crystal size on the mechanical properties of a lithium disilicate glass-ceramic. Mater Sci Eng A. 2016;669:332–9.  https://doi.org/10.1016/j.msea.2016.05.068.CrossRefGoogle Scholar
  32. 32.
    Zhang Z, Guo J, Sun Y, Tian B, Zheng X, Zhou M, et al. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics. J Mech Behav Biomed. 2018;81:52–60.  https://doi.org/10.1016/j.jmbbm.2018.02.023.CrossRefGoogle Scholar
  33. 33.
    Hallmann L, Ulmer P, Kern M. Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics. J Mech Behav Biomed. 2018;82:355–70.  https://doi.org/10.1016/j.jmbbm.2018.02.032.CrossRefGoogle Scholar
  34. 34.
    Shan Z, Liu J, Shi F, Liu S, Yu L, Wu C, et al. A new strengthening theory for improving the fracture strength of lithium disilicate glass-ceramics by introducing Rb or Cs ions. J Non-Cryst Solids. 2018;481:479–85.  https://doi.org/10.1016/j.jnoncrysol.2017.11.038.CrossRefGoogle Scholar
  35. 35.
    Swain M. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5(5):1668–77.  https://doi.org/10.1016/j.actbio.2008.12.016.CrossRefPubMedGoogle Scholar
  36. 36.
    Belli R, Petschelt A, Lohbauer U. Thermal-induced residual stresses affect the fractographic patterns of zirconia-veneer dental prostheses. J Mech Behav Biomed Mater. 2013;21:167–77.  https://doi.org/10.1016/j.jmbbm.2012.10.022.CrossRefPubMedGoogle Scholar
  37. 37.
    Belli R, Frankenberger R, Appelt A, Schmitt J, Baratieri LN, Greil P, et al. Thermal-induced residual stresses affect the lifetime of zirconia–veneer crowns. Dent Mater. 2013;29(2):181–90.  https://doi.org/10.1016/j.dental.2012.11.015.CrossRefPubMedGoogle Scholar
  38. 38.
    Makhija SK, Lawson NC, Gilbert GH, Litaker MS, McClelland JA, Louis DR, et al. Dentist material selection for single-unit crowns: findings from the National Dental Practice-Based Research Network. J Dent. 2016;55:40–7.  https://doi.org/10.1016/j.jdent.2016.09.010.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed. 2016;59:128–38.  https://doi.org/10.1016/j.jmbbm.2015.11.040.CrossRefGoogle Scholar
  40. 40.
    Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30(10):1195–203.  https://doi.org/10.1016/j.dental.2014.08.375.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Stawarczyk B, Özcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig. 2013;17(1):269–74.  https://doi.org/10.1007/s00784-012-0692-6.CrossRefPubMedGoogle Scholar
  42. 42.
    Matsui K, Yamakawa T, Uehara M, Enomoto N, Hojo J. Mechanism of alumina-enhanced sintering of fine zirconia powder: influence of alumina concentration on the initial stage sintering. J Am Ceram Soc. 2008;91(6):1888–97.  https://doi.org/10.1111/j.1551-2916.2008.02350.x.CrossRefGoogle Scholar
  43. 43.
    Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater. 2016;32(12):e327–e37.  https://doi.org/10.1016/j.dental.2016.09.025.CrossRefPubMedGoogle Scholar
  44. 44.
    Carrabba M, Keeling AJ, Aziz A, Vichi A, Fonzar RF, Wood D, et al. Translucent zirconia in the ceramic scenario for monolithic restorations: a flexural strength and translucency comparison test. J Dent. 2017;60:70–6.  https://doi.org/10.1016/j.jdent.2017.03.002.CrossRefPubMedGoogle Scholar
  45. 45.
    Mao L, Kaizer M, Zhao M, Guo B, Song Y, Zhang Y. Graded ultra-translucent zirconia (5Y-PSZ) for strength and functionalities. J Dent Res. 2018;97(11):1222–8.  https://doi.org/10.1177/0022034518771287.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    • Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater. 2019;91:24–34.  https://doi.org/10.1016/j.actbio.2019.04.043Discussions and contributions on new translucent zirconia. CrossRefPubMedGoogle Scholar
  47. 47.
    Belli R, Wendler M, Zorzin JI, Lohbauer U. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials. Dent Mater. 2018;34(1):97–119.  https://doi.org/10.1016/j.dental.2017.11.016.CrossRefPubMedGoogle Scholar
  48. 48.
    Belli R, Zorzin JI, Lohbauer U. Fracture toughness testing of dental restoratives: a critical evaluation. Curr Oral Health Rep. 2018;5(3):163–8.  https://doi.org/10.1007/s40496-018-0184-0.CrossRefGoogle Scholar
  49. 49.
    Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587–93.  https://doi.org/10.1016/j.prosdent.2015.04.016.CrossRefPubMedGoogle Scholar
  50. 50.
    Pfeilschifter M, Preis V, Behr M, Rosentritt M. Edge strength of CAD/CAM materials. J Dent. 2018;74:95–100.  https://doi.org/10.1016/j.jdent.2018.05.004.CrossRefPubMedGoogle Scholar
  51. 51.
    El Ghoul W, Özcan M, Silwadi M, Salameh Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J Esthet Restor Dent. 2019:1–10.  https://doi.org/10.1111/jerd.12486.CrossRefGoogle Scholar
  52. 52.
    Sonmez N, Gultekin P, Turp V, Akgungor G, Sen D, Mijiritsky E. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: a comparative in vitro study. BMC Oral Health. 2018;18(1):5–13.  https://doi.org/10.1186/s12903-017-0458-2.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sen N, Us YO. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J Prosthet Dent. 2018;119(4):593–9.  https://doi.org/10.1016/j.prosdent.2017.06.012.CrossRefPubMedGoogle Scholar
  54. 54.
    Zimmermann M, Ender A, Egli G, Özcan M, Mehl A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Investig. 2019;23(6):2777–84.  https://doi.org/10.1007/s00784-018-2717-2.CrossRefPubMedGoogle Scholar
  55. 55.
    Wendler M, Belli R, Valladares D, Petschelt A, Lohbauer U. Chairside CAD/CAM materials. Part 3: cyclic fatigue parameters and lifetime predictions. Dent Mater. 2018;34(6):910–21.  https://doi.org/10.1016/j.dental.2018.03.024.CrossRefPubMedGoogle Scholar
  56. 56.
    Homaei E, Farhangdoost K, Tsoi JKH, Matinlinna JP, EHN P. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics. J Mech Behav Biomed Mater. 2016;59:304–13.  https://doi.org/10.1016/j.jmbbm.2016.01.023.CrossRefPubMedGoogle Scholar
  57. 57.
    Venturini AB, Prochnow C, Pereira GK, Segala RD, Kleverlaan CJ, Valandro LF. Fatigue performance of adhesively cemented glass-, hybrid-and resin-ceramic materials for CAD/CAM monolithic restorations. Dent Mater. 2019;35(4):534–42.  https://doi.org/10.1016/j.dental.2019.01.013.CrossRefPubMedGoogle Scholar
  58. 58.
    Ottoni R, Griggs JA, Corazza PH, Della Bona Á, Borba M. Precision of different fatigue methods for predicting glass-ceramic failure. J Mech Behav Biomed Mater. 2018;88:497–503.  https://doi.org/10.1016/j.jmbbm.2018.09.004.CrossRefPubMedGoogle Scholar
  59. 59.
    Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289–96.  https://doi.org/10.14219/jada.archive.2006.0389.CrossRefPubMedGoogle Scholar
  60. 60.
    Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: an art form based on scientific principles. J Prosthet Dent. 2001;85(4):363–76.  https://doi.org/10.1067/mpr.2001.114685.CrossRefPubMedGoogle Scholar
  61. 61.
    Tiu J, Al-Amleh B, Waddell JN, Duncan WJ. Clinical tooth preparations and associated measuring methods: a systematic review. J Prosthet Dent. 2015;113(3):175–84.  https://doi.org/10.1016/j.prosdent.2014.09.007.CrossRefPubMedGoogle Scholar
  62. 62.
    Pereira G, Fraga S, Montagner A, Soares F, Kleverlaan C, Valandro L. The effect of grinding on the mechanical behavior of Y-TZP ceramics: a systematic review and meta-analyses. J Mech Behav Biomed. 2016;63:417–42.  https://doi.org/10.1016/j.jmbbm.2016.06.028.CrossRefGoogle Scholar
  63. 63.
    Coldea A, Fischer J, Swain MV, Thiel N. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments. Dent Mater. 2015;31(6):684–94.  https://doi.org/10.1016/j.dental.2015.03.007.CrossRefPubMedGoogle Scholar
  64. 64.
    Ludovichetti FS, Trindade FZ, Adabo GL, Pezzato L, Fonseca RG. Effect of grinding and polishing on the roughness and fracture resistance of cemented CAD-CAM monolithic materials submitted to mechanical aging. J Prosthet Dent. 2019;121(5):866–e1.  https://doi.org/10.1016/j.prosdent.2019.02.012.CrossRefPubMedGoogle Scholar
  65. 65.
    Husain NA-H, Camilleri J, Özcan M. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: an evaluation with XPS and XRD analysis. J Mech Behav Biomed. 2016;64:104–12.  https://doi.org/10.1016/j.jmbbm.2016.07.025.CrossRefGoogle Scholar
  66. 66.
    Curran P, Cattani-Lorente M, Wiskott HA, Durual S, Scherrer SS. Grinding damage assessment for CAD-CAM restorative materials. Dent Mater. 2017;33(3):294–308.  https://doi.org/10.1016/j.dental.2016.12.004.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Laboratory for Dental Biomaterials, Dental Clinic 1 – Operative Dentistry and PeriodontologyFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations