Advertisement

Current Oral Health Reports

, Volume 4, Issue 3, pp 248–257 | Cite as

How Stable is Dentin As a Substrate for Bonding?

  • Tatjana Maravic
  • Annalisa Mazzoni
  • Allegra Comba
  • Nicola Scotti
  • Vittorio Checchi
  • Lorenzo BreschiEmail author
Dental Restorative Materials (M Özcan, section editor)
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials

Abstract

Purpose of Review

This paper reviews the complexity of the composition of dentin, and the repercussions of this composition on the stability of dentin over time, particularly in relation to adhesive dental procedures.

Recent Findings

Dentin is a complex and dynamic structure that comprises the major part of the tooth. Most adhesive procedures in dentistry involve bonding to dentin. The hybrid layer (HL) created on the very variable and dynamic organic dentin phase may fail over time, leading to the failure of dental restorations. Literature showed that the collagen fibers in the HL are prone to hydrolysis and mechanical strain, as well as endogenous proteolytic activity (collagenolytic activity of matrix metalloproteinases and cysteine cathepsins). Hydrolysis of the resin phase of the HL also occurs over time.

Summary

Advancements in the area of dental adhesion have been huge. Silencing of collagenolytic enzymes (protease inhibitors and cross-linking agents) is one of the main strategies to decrease the degradation of the HL. In the following years, new techniques will also probably be available, and efficacy of some of the available techniques will perhaps be further clarified.

Keywords

Dentin Collagen Dentin bonding systems Hybrid layer Metalloproteinases Cross-linking agent Enzyme inhibition 

Notes

Compliance with Ethical Standards

Conflicts of Interest

Tatjana Maravic, Annalisa Mazzoni, Allegra Comba, Nicola Scotti, Vittorio Checchi and Lorenzo Breschi declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Orsini G, Ruggeri Jr A, Mazzoni A, Nato F, Manzoli L, Putignano A, et al. A review of the nature, role, and function of dentin non-collagenous proteins. Part 1: proteoglycans and glycoproteins. Endod Top. 2009;21:1–18.CrossRefGoogle Scholar
  2. 2.
    Bella J, Brodsky B, Berman HM. Hydration structure of a collagen peptide. Structure. 2017;3:893–906.CrossRefGoogle Scholar
  3. 3.
    Tjäderhane L, Haapasalo M. The dentin–pulp border: a dynamic interface between hard and soft tissues. Endod Top. 2009;20:52–84.CrossRefGoogle Scholar
  4. 4.
    Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res. 2011;90:953–68.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sano H. Microtensile testing, nanoleakage, and biodegradation of resin-dentin bonds. J Dent Res. 2006;85:11–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Spencer P, Ye Q, Park J, Topp EM, Misra A, Marangos O, et al. Adhesive/dentin interface: the weak link in the composite restoration. Ann Biomed Eng. 2010;38:1989–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Amaral FLB, Colucci V, Palma-Dibb RG, Corona SAM. Assessment of in vitro methods used to promote adhesive interface degradation: a critical review. J Esthet Restor Dent. 2007;19:340–53.PubMedCrossRefGoogle Scholar
  8. 8.
    Jokstad S, Blunck U, Tyas M, Wilson NAB. Quality of dental restorations. FDI Commission Project 2-95. Int Dent J. 2001;51:117–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH. Dentin basic structure and composition-an overview. Endod Top. 2009;20:3–29.CrossRefGoogle Scholar
  10. 10.
    Carvalho RM, Tjäderhane L, Manso AP, Carrilho MR, Carvalho CAR. Dentin as a bonding substrate. Endod Top. 2012;21:62–88.CrossRefGoogle Scholar
  11. 11.
    Kinney JH, Marshall Jr GW, Marshall SJ, Hohling H-J, Wiesmann UP, Arends J, et al. Three-dimensional mapping of mineral densities in carious dentin: theory and method. Scanning Microsc. 1994;8:197–205.PubMedGoogle Scholar
  12. 12.
    Perdigão J, Lambrechts P, Van Meerbeek B, Tomé ÂR, Vanherle G, Lopes AB. Morphological field emission-SEM study of the effect of six phosphoric acid etching agents on human dentin. Dent Mater. 1996;12:262–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Meerbeek B, Vargas M, Inque S, Yoshida Y, Perdigão J, Lambrechts P, et al. Microscopy investigations. Techniques, results, limitations. Am J Dent. 2000;13:3D–18.PubMedGoogle Scholar
  14. 14.
    Lin CP, Douglas WH, Erlandsen SL. Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth. J Histochem Cytochem. 1993;41:381–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Breschi L, Gobbi P, Mazzotti G, Ellis T, Sacher E, Stangel I. A field emission SEM study of enamel and dentin. Biomed Mater Res. 1999;46:315–23.CrossRefGoogle Scholar
  16. 16.
    Cheng H, Caterson B, Yamauchi M. Identification and immunolocalization of chondroitin sulfate proteoglycans in tooth cementum. Connect Tissue Res. 1999;40:37–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Marshall GW, Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent. 1997;25:441–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldberg M, Takagi M. Dentine proteoglycans: composition, ultrastructure and functions. Histochem J. 1993;25:781–806.PubMedCrossRefGoogle Scholar
  19. 19.
    Scott JE. Proteoglycan-fibrillar collagen interactions. Biochem J. 1988;252:313–23.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Vogel KG, Paulsson M, Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984;223:587–97.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hedbom E, Heinegård D. Binding of fibromodulin and decorin to separate sites on fibrillar collagens. J Biol Chem. 1993;268:27307–12.PubMedGoogle Scholar
  22. 22.
    Oyarzún A, Rathkamp H, Dreyer E. Immunohistochemical and ultrastructural evaluation of the effects of phosphoric acid etching on dentin proteoglycans. Eur J Oral Sci. 2000;108:546–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Breschi L, Perdigão J, Gobbi P, Mazzotti G, Falconi M, Lopes M. Immunocytochemical identification of type I collagen in acid-etched dentin. J Biomed Mater Res A. 2003;66:764–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Breschi L, Lopes M, Gobbi P, Mazzotti G, Falconi M, Perdigão J. Dentin proteoglycans: an immunocytochemical FEISEM study. J Biomed Mater Res. 2002;61:40–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Tay FR, Pashley DH, Yoshiyama M. Two modes of nanoleakage expression in single-step adhesives. J Dent Res. 2002;81:472–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Breschi L, Gobbi P, Lopes M, Prati C, Falconi M, Teti G, et al. Immunocytochemical analysis of dentin: a double-labeling technique. J Biomed Mater Res A. 2003;67:11–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol ILS, Geraldeli S, et al. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater. 2013;29:116–35.PubMedCrossRefGoogle Scholar
  28. 28.•
    Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface. Dent Mater. 2008;24:90–101. This manuscript critically discusses and gives valuable and detailed information related to formation, aging and stability of resin bonding.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Y, Spencer P. Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J Biomed Mater Res. 2002;59:46–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Hashimoto M, Ohno H, Sano H, Kaga M, Oguchi H. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials. 2003;24:3795–803.PubMedCrossRefGoogle Scholar
  31. 31.
    Armstrong SR, Keller JC, Boyer DB. The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dent Mater. 2001;17:268–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Breschi L, Prati C, Gobbi P, Pashley D, Mazzotti G, Teti G, et al. Immunohistochemical analysis of collagen fibrils within the hybrid layer: a FEISEM study. Oper Dent. 2004;29:538–46.PubMedGoogle Scholar
  33. 33.
    Kim YK, Gu L, Bryan TE, Kim JR, Chen L, Liu Y, et al. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials. 2010;31:6618–27.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    De Munck J, Van Meerbeek B, Van Landuyt K, Lambrechts P. Influence of a shock absorbing layer on the fatigue resistance of a dentin–biomaterial interface. Eur J Oral Sci. 2005;113:1–6.CrossRefGoogle Scholar
  35. 35.
    Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc. 2003;69:726–31.PubMedGoogle Scholar
  36. 36.
    De Munck J, Braem M, Wevers M, Yoshida Y, Inoue S, Suzuki K, et al. Micro-rotary fatigue of tooth–biomaterial interfaces. Biomaterials. 2005;26:1145–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Eick JD, Gwinnett AJ, Pashley DH, Robinson SJ. Current concepts on adhesion to dentin. Crit Rev Oral Biol Med. 1997;8:306–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Cadenaro M, Antoniolli F, Sauro S, Tay FR, Di Lenarda R, Prati C, et al. Degree of conversion and permeability of dental adhesives. Eur J Oral Sci. 2005;113:525–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Cadenaro M, Breschi L, Antoniolli F, Mazzoni A, Di Lenarda R. Influence of whitening on the degree of conversion of dental adhesives on dentin. Eur J Oral Sci. 2006;114:257–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Hashimoto M, Ohno H, Kaga M, Endo K, Sano H, Oguchi H. In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res. 2000;79:1385–91.PubMedCrossRefGoogle Scholar
  41. 41.
    De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84:118–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med. 2001;12:136–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Jaffer F, Finer Y, Santerre JP. Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials. 2002;23:1707–19.PubMedCrossRefGoogle Scholar
  44. 44.
    Hashimoto M, Ohno H, Sano H, Tay F, Kaga M, Kudou Y, et al. Micromorphological changes in resin–dentin bonds after 1 year of water storage. J Biomed Mater Res. 2002;63:306–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Hashimoto M, Tay FR, Ohno H, Sano H, Kaga M, Yiu C, et al. SEM and TEM analysis of water degradation of human dentinal collagen. J Biomed Mater Res. 2003;66:287–98.CrossRefGoogle Scholar
  46. 46.
    Kanca J. Improving bond strength through acid etching of dentin and bonding to wet dentin surfaces. J Am Dent Assoc. 1992;123:35–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Marshall SJ, Bayne SC, Baier R, Tomsia AP, Marshall GW. A review of adhesion science. Dent Mater. 2010;26:e11–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, et al. Water sorption/solubility of dental adhesive resins. Dent Mater. 2006;22:973–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Peumans M, Kanumilli P, De Munck J, Van Landuyt K, Lambrechts P, Van Meerbeek B. Clinical effectiveness of contemporary adhesives: a systematic review of current clinical trials. Dent Mater. 2005;21:864–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Hashimoto M. A review: micromorphological evidence of degradation in resin-dentin bonds and potential preventional solutions. J Biomed Mater Res Part B Appl Biomater. 2010;92:268–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang Y, Spencer P. Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res. 2003;82:141–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Kermanshahi S, Santerre JP, Cvitkovitch DG, Finer Y. Biodegradation of resin-dentin interfaces increases bacterial microleakage. J Dent Res. 2010;89:996–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.•
    Pashley D, Tay F, Yiu C, Hashimoto M, Breschi L, Carvalho R. Collagen degradation by host-derived enzymes during aging. J Dent Res. 2004;83:216–21. This manuscript represents the first study to highlight endogenous enzymes as responsible for dentinal collagen degradation over time.PubMedCrossRefGoogle Scholar
  54. 54.
    Armstrong SRE, Vargas MA, Chung I, Pashley DH, Campbell JA, Laffoon JE, et al. Resin-dentin interfacial ultrastructure and microtensile dentin bond strength after five-year water storage. Oper Dent. 2004;29:705–12.PubMedGoogle Scholar
  55. 55.
    Tjäderhane L, Larjava H, Sorsa T, Uitto V-J, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res. 1998;77:1622–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Sulkala M, Larmas M, Sorsa T, Salo T, Tjäderhane L. The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. J Dent Res. 2002;81:603–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee W, Aitken S, Sodek J, McCulloch CAG. Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. J Periodontal Res. 1995;30:23–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Dayan D, Binderman I, Mechanic GL. A preliminary study of activation of collagenase in carious human dentine matrix. Arch Oral Biol. 1983;28:185–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, et al. Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res. 2007;86:436–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Mazzoni A, Papa V, Nato F, Carrilho M, Tjäderhane L, Ruggeri A, et al. Immunohistochemical and biochemical assay of MMP-3 in human dentine. J Dent. 2011;39:231–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Santos J, Carrilho M, Tervahartiala T, Sorsa T, Breschi L, Mazzoni A, et al. Determination of matrix metalloproteinases in human radicular dentin. J Endod. 2009;35:686–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Sulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tjäderhane L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol. 2007;52:121–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Martin-De Las Heras S, Valenzuela A, Overall C. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol. 2000;45:757–65.PubMedCrossRefGoogle Scholar
  64. 64.
    Mazzoni A, Pashley DH, Tay FR, Gobbi P, Orsini G, Ruggeri A, et al. Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis. J Biomed Mater Res Part A. 2009;88:697–703.CrossRefGoogle Scholar
  65. 65.
    Boushell LW, Nagaoka H, Nagaoka H, Yamauchi M. Increased matrix metalloproteinase-2 and bone sialoprotein response to human coronal caries. Caries Res. 2011;45:453–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Boukpessi T, Menashi S, Camoin L, TenCate JM, Goldberg M, Chaussain-Miller C. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials. 2008;29:4367–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Palosaari H, Pennington C, Larmas M, Tjäderhane L, Salo T. Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue. Eur J Oral Sci. 2003;111:117–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Hannas AR, Pereira JC, Granjeiro JM, Tjäderhane L, Hannas AR, Pereira JC, et al. The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand. 2007;65:1–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Carrilho M, Geraldeli S, Tay F, de Goes M, Carvalho R, Tjäderhane L. In vivo preservation of hybrid layer by chlorhexidine. J Dent Res. 2007;86:529–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Mazzoni A, Scaffa P, Carrilho M, Tjäderhane L, Di Lenarda R, Polimeni A, et al. Effects of etch-and-rinse and self-etch adhesives on dentin MMP-2 and MMP-9. J Dent Res. 2013;92:82–6.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol ILS, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer: a review. Dent Mater. 2013;29:999–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mazzoni A, Pashley DH, Nishitani Y, Breschi L, Mannello F, Tjäderhane L, et al. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials. 2006;27:4470–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Nishitani Y, Yoshiyama M, Wadgaonkar B, Breschi L, Mannello F, Mazzoni A, et al. Activation of gelatinolytic/collagenolytic activity in dentin by self­etching adhesives. Eur J Oral Sci. 2006;114:160–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Mazzoni A, Carrilho M, Papa V, Tjäderhane L, Gobbi P, Nucci C, et al. MMP-2 assay within the hybrid layer created by a two-step etch-and-rinse adhesive: biochemical and immunohistochemical analysis. J Dent. 2011;39:470–7.PubMedCrossRefGoogle Scholar
  75. 75.•
    Mazzoni A, Nascimento F, Carrilho M, Tersariol I, Papa V, Tjäderhane L, et al. MMP activity in the hybrid layer detected with in situ zymography. J Dent Res. 2012;91:467–72. In this manuscript, a novel and valuable method for the analysis of MMPs activity was introduced.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mazzoni A, Apolonio FM, Saboia VPA, Santi S, Angeloni V, Checchi V, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding. J Dent Res. 2014;93:263–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, Pääkkönen V, Martins MT, et al. Cysteine cathepsins in human dentin-pulp complex. J Endod. 2010;36:475–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, Tay FR, et al. Cysteine cathepsins in human carious dentin. J Dent Res. 2011;90:506–11.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Vidal CMP, Tjäderhane L, Scaffa PM, Tersariol IL, Pashley D, Nader HB, et al. Abundance of MMPs and cysteine cathepsins in caries-affected dentin. J Dent Res. 2014;93:269–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Breschi L, Mazzoni A, Nato F, Carrilho M, Tjäderhane L, Ruggeri Jr A, et al. Chlorhexidine stabilizes the adhesive interface: a 2 year in vitro study. Dent Mater. 2010;26:1–12.CrossRefGoogle Scholar
  81. 81.
    Breschi L, Martin P, Mazzoni A, Nato F, Carrilho M, Tjäderhane L, et al. Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dent Mater. 2010;26:571–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Almahdy A, Koller G, Sauro S, Bartsch JW, Sherriff M, Watson TF, et al. Effects of MMP inhibitors incorporated within dental adhesives. J Dent Res. 2012;91:605–11.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Tezvergil-Mutluay A, Agee KA, Uchiyama T, Imazato S, Mutluay MM, Cadenaro M, et al. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs. J Dent Res. 2011;90:535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tezvergil-Mutluay A, Mutluay MM, Gu LS, Zhang K, Agee KA, Carvalho RM, et al. The anti-MMP activity of benzalkonium chloride. J Dent. 2011;39:57–64.PubMedCrossRefGoogle Scholar
  85. 85.
    Bedran-Russo AKB, Vidal CMP, Dos Santos PH, Castellan CS. Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds. J Biomed Mater Res Part B Appl Biomater. 2010;94:250–5.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin. J Dent Res. 2009;88:719–24.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gendron R, Grenier D, Sorsa T, Mayrand D. Inhibition of the activities of matrix metalloproteinases 2, 8, and 9 by chlorhexidine. Clin Diagn Lab Immunol. 1999;6:437–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Scaffa PMC, Vidal CMP, Barros N, Gesteira TF, Carmona AK, Breschi L, et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res. 2012;91:420–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Breschi L, Cammelli F, Visintini E, Mazzoni A, Carrilho M, Cadenaro M, et al. Influence of chlorhexidine concentration on the durability of etch-and-rinse dentin bonds: a 12-month in vitro study. J Adhes Dent. 2009;11:191–8.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Campos EA, Correr GM, Leonardi DP, Barato-Filho F, Gonzaga CC, Zielak JC. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing. J Dent. 2009;37:108–14.PubMedCrossRefGoogle Scholar
  91. 91.
    Loguercio AD, Hass V, Gutierrez MF, Luque-Martinez IV, Szezs A, Stanislawczuk R, et al. Five-year effects of chlorhexidine on the in vitro durability of resin/dentin interfaces. J Adhes Dent. 2016;18:35–43.PubMedGoogle Scholar
  92. 92.
    Zheng P, Zaruba M, Attin T, Wiegand A. Effect of different matrix metalloproteinase inhibitors on microtensile bond strength of an etch-and-rinse and a self-etching adhesive to dentin. Oper Dent. 2014;40:80–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Stanislawczuk R, Pereira F, Muñoz MA, Luque I, Farago PV, Reis A, et al. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces. J Dent. 2014;42:39–47.PubMedCrossRefGoogle Scholar
  94. 94.
    Carrilho MRO, Carvalho RM, de Goes MF, di Hipólito V, Geraldeli S, Tay FR, et al. Chlorhexidine preserves dentin bond in vitro. J Dent Res. 2007;86:90–4.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Brackett MG, Tay FR, Brackett WW, Dib A, Dipp FA, Mai S, et al. In vivo chlorhexidine stabilization of hybrid layers of an acetone-based dentin adhesive. Oper Dent. 2009;34:379–83.PubMedCrossRefGoogle Scholar
  96. 96.
    Mobarak EH. Effect of chlorhexidine pretreatment on bond strength durability of caries-affected dentin over 2-year aging in artificial saliva and under simulated intrapulpal pressure. Oper Dent. 2011;36:649–60.PubMedCrossRefGoogle Scholar
  97. 97.
    Leitune VCB, Portella FF, Bohn PV, Collares FM, Samuel SMW. Influence of chlorhexidine application on longitudinal adhesive bond strength in deciduous teeth. Braz Oral Res. 2011;25:388–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Yiu CKY, Hiraishi N, Tay FR, King NM. Effect of chlorhexidine incorporation into dental adhesive resin on durability of resin-dentin bond. J Adhes Dent. 2012;14:355–62.PubMedGoogle Scholar
  99. 99.
    Imazato S, Kinomoto Y, Tarumi H, Ebisu S, Tay FR. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater. 2017;19:313–9.CrossRefGoogle Scholar
  100. 100.
    Imazato S, Tay FR, Kaneshiro AV, Takahashi Y, Ebisu S. An in vivo evaluation of bonding ability of comprehensive antibacterial adhesive system incorporating MDPB. Dent Mater. 2017;23:170–6.CrossRefGoogle Scholar
  101. 101.
    Tezvergil-Mutluay A, Agee KA, Mazzoni A, Carvalho RM, Carrilho M, Tersariol IL, et al. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins? Dent Mater. 2017;31:e25–32.CrossRefGoogle Scholar
  102. 102.
    Pashley D, Tay F, Imazato S. How to increase the durability of resin-dentin bonds. Compend Contin Educ Dent. 2011;32:60–4.PubMedGoogle Scholar
  103. 103.
    Kanca III J. One step bond strength to enamel and dentin. Am J Dent. 1997;10:5–8.PubMedGoogle Scholar
  104. 104.
    Sabatini C, Patel SK. Matrix metalloproteinase inhibitory properties of benzalkonium chloride stabilizes adhesive interfaces. Eur J Oral Sci. 2013;121:610–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Sabatini C, Ortiz PA, Pashley DH. Preservation of resin-dentin interfaces treated with benzalkonium chloride adhesive blends. Eur J Oral Sci. 2015;123:108–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, et al. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res. 2001;80:1545–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Lauhio A, Salo T, Tjäderhane L, Lähdevirta J, Golub L, Sorsa T. Tetracyclines in treatment of rheumatoid arthritis. Lancet. 2017;346:645–6.CrossRefGoogle Scholar
  108. 108.
    Sorsa T, Tjäderhane L, Konttinen YT, Lauhio A, Salo T, Lee H, et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med. 2006;38:306–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Heikkilä P, Teronen O, Moilanen M, Konttinen YT, Hanemaaijer R, Laitinen M, et al. Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anticancer Drugs. 2002;13:245–54.PubMedCrossRefGoogle Scholar
  110. 110.
    Tezvergil-Mutluay A, Agee KA, Hoshika T, Tay FR, Pashley DH. The inhibitory effect of polyvinylphosphonic acid on functional matrix metalloproteinase activities in human demineralized dentin. Acta Biomater. 2010;6:4136–42.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Bedran-Russo AKB, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res Part B Appl Biomater. 2008;86:330–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Xu C, Wang Y. Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res Part B Appl Biomater. 2011;96(B):242–8.PubMedCrossRefGoogle Scholar
  113. 113.
    De Munck J, Mine A, den Steen PE, Van Landuyt KL, Poitevin A, Opdenakker G, et al. Enzymatic degradation of adhesive–dentin interfaces produced by mild self-etch adhesives. Eur J Oral Sci. 2010;118:494–501.PubMedCrossRefGoogle Scholar
  114. 114.
    Donmez N, Belli S, Pashley DH, Tay FR. Ultrastructural correlates of in vivo/in vitro bond degradation in self-etch adhesives. J Dent Res. 2005;84:355–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Sadek FT, Braga RR, Muench A, Liu Y, Pashley DH, Tay FR. Ethanol wet-bonding challenges current anti-degradation strategy. J Dent Res. 2010;89:1499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Komori PCP, Pashley DH, Tjäderhane L, Breschi L, Mazzoni A, de Goes MF, et al. Effect of 2% chlorhexidine digluconate on the bond strength to normal versus caries-affected dentin. Oper Dent. 2009;34:157–65.PubMedCrossRefGoogle Scholar
  117. 117.
    Griffiths BM, Watson TF, Sherriff M. The influence of dentine bonding systems and their handling characteristics on the morphology and micropermeability of the dentine adhesive interface. J Dent. 2017;27:63–71.CrossRefGoogle Scholar
  118. 118.
    Koshiro K, Inoue S, Tanaka T, Koase K, Fujita M, Hashimoto M, et al. In vivo degradation of resin–dentin bonds produced by a self-etch vs. a total-etch adhesive system. Eur J Oral Sci. 2004;112:368–75.PubMedCrossRefGoogle Scholar
  119. 119.
    Ricci HA, Sanabe ME, de Souza Costa CA, Pashley DH, Hebling J. Chlorhexidine increases the longevity of in vivo resin-dentin bonds. Eur J Oral Sci. 2010;118:411–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Bedran-Russo AKB, Pereira PNR, Duarte WR, Drummond JL, Yamauchi M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J Biomed Mater Res Part B Appl Biomater. 2007;80B:268–72.CrossRefGoogle Scholar
  121. 121.
    Cova A, Breschi L, Nato F, Ruggeri Jr A, Carrilho M, Tjaderhane L, et al. Effect of UVA-activated riboflavin on dentin bonding. J Dent Res. 2011;90:1439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bedran-Russo AKB, Yoo KJ, Ema KC, Pashley DH. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res. 2009;88:807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tezvergil-Mutluay A, Mutluay MM, Agee KA, Seseogullari-Dirihan R, Hoshika T, Cadenaro M, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro. J Dent Res. 2012;91:192–6.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, et al. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004;23:3020–30.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Pashley DH, Tay FR, Breschi L, Tjäderhane L, Carvalho RM, Carrilho M, et al. State of the art etch-and-rinse adhesives. Dent Mater. 2017;27:1–16.CrossRefGoogle Scholar
  126. 126.
    Mazzoni A, Angeloni V, Apolonio FM, Scotti N, Tjäderhane L, Tezvergil-Mutluay A, et al. Effect of carbodiimide (EDC) on the bond stability of etch-and-rinse adhesive systems. Dent Mater. 2013;29:1040–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Pashley DH, Tay FR, Carvalho RM, Rueggeberg FA, Agee KA, Carrilho M, et al. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am J Dent. 2007;20:7–20.PubMedGoogle Scholar
  128. 128.
    Sauro S, Watson TF, Mannocci F, Miyake K, Huffman BP, Tay FR, et al. Two-photon laser confocal microscopy of micropermeability of resin-dentin bonds made with water or ethanol wet bonding. J Biomed Mater Res Part B Appl Biomater. 2009;90:327–37.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Shin TP, Yao X, Huenergardt R, Walker MP, Wang Y. Morphological and chemical characterization of bonding hydrophobic adhesive to dentin using ethanol wet bonding technique. Dent Mater. 2017;25:1050–7.CrossRefGoogle Scholar
  130. 130.
    Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29:1127–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tatjana Maravic
    • 1
  • Annalisa Mazzoni
    • 1
  • Allegra Comba
    • 1
  • Nicola Scotti
    • 2
  • Vittorio Checchi
    • 1
  • Lorenzo Breschi
    • 1
    Email author
  1. 1.Dental School, Department of Biomedical and Neuromotor Sciences, DIBINEMUniversity of BolognaBolognaItaly
  2. 2.Dental School, Department of Surgical SciencesUniversity of TurinTorinoItaly

Personalised recommendations