Current Oral Health Reports

, Volume 4, Issue 3, pp 239–247 | Cite as

Engineering Dental Implants

  • Daniel RittelEmail author
  • Keren Shemtov-Yona
  • Raoof Korabi
Dental Restorative Materials (M Özcan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials


Purpose of Review

Implant dentistry is traditionally viewed as a clinical subject. However, the integration of a foreign metallic structure into a living bone involves several engineering considerations. This paper aims at reviewing and discussing recent basic issues and developments pertaining to the engineering aspects of dental implant development.

Recent Findings

We consider the three components of the system, namely the implant itself, the bone, and their interaction. We start with the implant material and its geometrical and surface condition parameters. Next, we discuss the long-term mechanical survivability of the implant, namely its resistance to fatigue cracking, outlining the uncertainty on the applied loads, and surrounding atmosphere. Following a summary of the jawbone from a mechanical standpoint, we discuss the dental implant-bone interaction, as modeled analytically or numerically, with emphasis on the bone damage and evolution. The contribution of high resolution observations to enriched numerical simulations is discussed.


Progress in both experimental characterization techniques and numerical simulation methods brings engineering and dentistry closer, allowing for more focused clinical work that will ultimately lead to personalized implant dentistry.


Dental implants Mechanical design Materials Fracture Finite element modeling Bone-implant interaction 


Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Chrcanovic BR, Albrektsson T, Wennerberg A. Reasons for failures of oral implants. J Oral Rehabil. 2014:443–76.Google Scholar
  2. 2.
    Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials (Basel). 2012;5:1528–45.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Antunes RA, De Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation. Acta Biomater. Acta Materialia Inc. 2012;8:937–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Papakyriacou M, Mayer H, Pypen C, Plenk H, Stanzl-Tschegg S. Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue. 2000;22:873–86.CrossRefGoogle Scholar
  5. 5.
    Oliveira NTC, Aleixo G, Caram R, Guastaldi AC. Development of Ti-Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater Sci Eng A. 2007;452–453:727–31.CrossRefGoogle Scholar
  6. 6.
    Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis–a case-control study. J Periodontol. 2016:1–12.Google Scholar
  7. 7.
    •• Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles–a systematic analytical review. Acta Biomater. 2014:2379–403. An up to date review. Google Scholar
  8. 8.
    Özkurt Z, Kazazoğlu E. Zirconia dental implants: a literature review. J Oral Implantol. 2011;37:367–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Gottlow J, Dard M, Kjellson F, Obrecht M, Sennerby L. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res. 2012;14:538–45.CrossRefPubMedGoogle Scholar
  10. 10.
    •• Osman R, Swain M. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015;8:932–58. A comparison of metallic and ceramic implants. CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hertzberg RW. Deformation and fracture mechanics of engineering materials. John Wiley Sons. 1983;697.Google Scholar
  12. 12.
    •• Lawn B. Fracture of brittle solids. Cambridge Univ. Press. 2nd ed. Cambridge: Cambridge University Press; 1975;47. A basic textbook on brittle fracture. Google Scholar
  13. 13.
    Mish E ACH. Contemporary implant dentistry. Mosby Elsevier. Elsevier Health Sciences; 2008. p. 8–13.Google Scholar
  14. 14.
    Cilla M, Checa S, Duda GN. Strain shielding inspired re-design of proximal femoral stems for total hip arthroplasty. J. Orthop Res. 2017.Google Scholar
  15. 15.
    Brunski JB. Biomechanical factors affecting the bone-dental implant Interface. Clin Mater. 1992;10:153–201.CrossRefPubMedGoogle Scholar
  16. 16.
    Buschang PH, Throckmorton GS, Travers KH, Johnson G. The effects of bolus size and chewing rate on masticatory performance with artificial test foods. J Oral Rehabil. Blackwell Publishing Ltd. 1997;24:522–6.CrossRefPubMedGoogle Scholar
  17. 17.
    •• Shemtov-Yona K, Rittel D. Random spectrum loading of dental implants: an alternative approach to functional performance assessment. J. Mech. Behav. Biomed. Mater. 2016;62:1–9. A new methodology for fatigue testing of dental implants. CrossRefPubMedGoogle Scholar
  18. 18.
    ISO. 14801-Dynamic loading test for endosseous dental implants. 2016.Google Scholar
  19. 19.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine grained materials by severe plastic deformation. JOM. Springer-Verlag. 2006;58:33–9.CrossRefGoogle Scholar
  20. 20.
    Medvedev AE, Lapovok R, Estrin Y, Lowe TC, Anumalasetty VN. Bending fatigue testing of commercial purity titanium for dental implants. Adv Eng Mater 2016;1–8.Google Scholar
  21. 21.
    Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res. Blackwell Publishing Ltd. 2010;21:772–7.Google Scholar
  22. 22.
    • Papaspyridakos P, Mokti M, Chen C-J, Benic GI, Gallucci GO, Chronopoulos V. Implant and prosthodontic survival rates with implant fixed complete dental prostheses in the edentulous mandible after at least 5 years: a systematic review. Clin. Implant Dent. Relat. Res. 2014;16:705–17. A systematic review. CrossRefPubMedGoogle Scholar
  23. 23.
    • Pommer B, Bucur L, Zauza K, Tepper G, Hof M, Watzek G. Meta-analysis of oral implant fracture incidence and related determinants. J. Oral Implantol. 2014;2014:1–7. A systematic review. CrossRefGoogle Scholar
  24. 24.
    Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials. 2002;23:2459–65.CrossRefPubMedGoogle Scholar
  25. 25.
    • Shemtov-Yona K, Rittel D. Identification of failure mechanisms in retrieved fractured dental implants. Eng. Fail. Anal. 2014;38:58–65. Systematic identification of implant failure by fatigue. CrossRefGoogle Scholar
  26. 26.
    •• Suresh S. Fatigue of materials. Cambridge University Press; 1998. Reference textbook on fatigue. Google Scholar
  27. 27.
    Schijve J. Fatigue of structures and materials. Fatigue Struct Mater. 2009.Google Scholar
  28. 28.
    Styles CM, Evans SL, Gregson PJ. Development of fatigue lifetime predictive test methods for hip implants: part I. Test Methodol Biomater. 1998;19:1057–65.CrossRefGoogle Scholar
  29. 29.
    Shemtov-Yona K, Rittel D. Fatigue of dental implants: facts and fallacies. Dent J. Multidisciplinary Digital Publishing Institute. 2016;4:16.Google Scholar
  30. 30.
    Gui J, Xie Z. Phase transformation and slow crack growth study of Y-TZP dental ceramic. Mater Sci Eng A. Elsevier. 2016;676:531–5.Google Scholar
  31. 31.
    Bathe KJ, Saunders H. Finite element procedures in engineering analysis. J Press Vessel Technol 1984. p. 421. Englewood Cliffs: Prentice-Hall.Google Scholar
  32. 32.
    Ayllón JM, Navarro C, Vázquez J, Domínguez J. Fatigue life estimation in dental implants. Eng Fract Mech. 2014;123:34–43.CrossRefGoogle Scholar
  33. 33.
    Milella PP. Fatigue and corrosion in metals. Fatigue Corros. Met. 2013.Google Scholar
  34. 34.
    Cruz HV, Henriques M, Teughels W, Celis J-P, Rocha LA. Combined influence of fluoride and biofilms on the biotribocorrosion behavior of titanium used for dental applications. J Bio Tribo Corrosion. 2015;1:21.CrossRefGoogle Scholar
  35. 35.
    •• Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res. 2003;65:188–95. Recipes of bodily-like fluids. CrossRefGoogle Scholar
  36. 36.
    Shemtov-Yona K, Rittel D. Fatigue failure of dental implants in simulated intraoral media. J Mech Behav Biomed Mater. Elsevier. 2016;62:636–44.Google Scholar
  37. 37.
    Shemtov-Yona K, Rittel D, Levin L, Machtei EE. The effect of oral-like environment on dental implants’ fatigue performance. Clin Oral Implants Res. 2014;25:E166–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Doi K, Miyabe S, Tsuchiya H, Fujimoto S. Degradation of Ti-6Al-4V alloy under cyclic loading in a simulated body environment with cell culturing. J Mech Behav Biomed Mater. Elsevier. 2016;56:6–13.Google Scholar
  39. 39.
    Branemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399–410.CrossRefPubMedGoogle Scholar
  40. 40.
    •• Bhushan B. Introduction to tribology, Second Edition. Introd. to Tribol. Second Ed. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK: John Wiley & Sons, Ltd; 2013. A basic reference on tribology, surface roughness etc.Google Scholar
  41. 41.
    Ferguson SJ, Langhoff JD, Voelter K, von Rechenberg B, Scharnweber D, Bierbaum S, et al. Biomechanical comparison of different surface modifications for dental implants. Int J Oral Maxillofac Implants. 2008;23:1037–46. Available from:
  42. 42.
    Chen J, Rungsiyakull C, Li W, Chen Y, Swain M, Li Q. Multiscale design of surface morphological gradient for osseointegration. J Mech Behav Biomed Mater. Elsevier. 2013;20:387–97.CrossRefPubMedGoogle Scholar
  43. 43.
    Coelho PG, Bonfante EA, Pessoa RS, Marin C, Granato R, Giro G, et al. Characterization of five different implant surfaces and their effect on osseointegration: a study in dogs. J. Periodontol. 2011;82:742–50.CrossRefPubMedGoogle Scholar
  44. 44.
    Huang HL, Hsu JT, Fuh LJ, Lin DJ, Chen MYC. Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Comput Biol Med. Elsevier. 2010;40:525–32.CrossRefPubMedGoogle Scholar
  45. 45.
    Barriuso S, Lieblich M, Multigner M, Etxeberria I, Alberdi A, González-Carrasco JL. Roughening of metallic biomaterials by abrasiveless waterjet peening: characterization and viability. Wear. 2011;270:634–9.CrossRefGoogle Scholar
  46. 46.
    Shemtov-Yona K, Rittel D, Dorogoy A. Mechanical assessment of grit blasting surface treatments of dental implants. J Mech Behav Biomed Mater. 2014;39:375–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Arola D, McCain ML, Kunaporn S, Ramulu M. Waterjet and abrasive waterjet surface treatment of titanium: a comparison of surface texture and residual stress. Wear. 2001;249:943–50.CrossRefGoogle Scholar
  48. 48.
    Fadida R, Rittel D, Shirizly A. Dynamic mechanical behavior of additively manufactured Ti6Al4V with controlled voids. J Appl Mech. 2015;82:41004.CrossRefGoogle Scholar
  49. 49.
    Barfeie A, Wilson J, Rees J. Implant surface characteristics and their effect on osseointegration. BDJ. Nature Publishing Group. 2015;218:E9.Google Scholar
  50. 50.
    •• Gibson LJ, Ashby MF, Harley BA. Cellular materials in nature and medicine. Cambridge University Press; 2010. A basic reference on the mechanics of cellular media. Google Scholar
  51. 51.
    Schwartz-Dabney CL, Dechow PC. Edentulation alters material properties of cortical bone in the human mandible. J Dent Res. SAGE Publications. 2002;81:613–7.Google Scholar
  52. 52.
    Schwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120:252–77.CrossRefPubMedGoogle Scholar
  53. 53.
    Nomura T, Gold E, Powers MP, Shingaki S, Katz JL. Micromechanics/structure relationships in the human mandible. Dent Mater. 2003;19:167–73.CrossRefPubMedGoogle Scholar
  54. 54.
    O’Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin. Oral Implants Res. 2000;11:415–21.CrossRefPubMedGoogle Scholar
  55. 55.
    O’Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin. Oral Implants Res. 2001;12:648–57.CrossRefPubMedGoogle Scholar
  56. 56.
    Lakatos É, Magyar L, Bojtár I. Material properties of the mandibular trabecular bone. J. Med. Eng. 2014;2014:7.CrossRefGoogle Scholar
  57. 57.
    Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999;57:700–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20:92–102.CrossRefPubMedGoogle Scholar
  59. 59.
    Natali AN, Carniel EL, Pavan PG. Modelling of mandible bone properties in the numerical analysis of oral implant biomechanics. Comput Methods Prog Biomed. Elsevier Ireland Ltd. 2010;100:158–65.Google Scholar
  60. 60.
    Bahrami B, Shahrbaf S, Mirzakouchaki B, Ghalichi F, Ashtiani M, Martin N. Effect of surface treatment on stress distribution in immediately loaded dental implants—a 3D finite element analysis. Dent Mater. The Academy of Dental Materials. 2014;30:e89–97.Google Scholar
  61. 61.
    Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone. Elsevier Inc. 2016;93:196–211.CrossRefPubMedGoogle Scholar
  62. 62.
    Lee C-S, Lee J-M, Youn B, Kim H-S, Shin JK, Goh TS, et al. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression. J Mech Behav Biomed Mater. Elsevier. 2017;65:213–23.CrossRefPubMedGoogle Scholar
  63. 63.
    Baumann AP, Shi X, Roeder RK, Niebur GL. The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model. Comput. Methods Biomech. Biomed. Engin. Taylor & Francis. 2016;19:465–73.CrossRefPubMedGoogle Scholar
  64. 64.
    Pawlikowski M, Barcz K. Non-linear viscoelastic constitutive model for bovine cortical bone tissue. Biocybern. Biomed. Eng. Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. 2016;36:491–8.CrossRefGoogle Scholar
  65. 65.
    •• Zysset PK, Schwiedrzik J, Wolfram U. European Society of Biomechanics S.M. Perren award 2016: a statistical damage model for bone tissue based on distinct compressive and tensile cracks. J. Biomech. Elsevier. 2016;49:3616–25. Recent sophisticated constitutive model for the bone tissue. CrossRefGoogle Scholar
  66. 66.
    Bekker A, Kok S, Cloete TJ, Nurick GN. Introducing objective power law rate dependence into a visco-elastic material model of bovine cortical bone. Int J Impact Eng. Elsevier Ltd. 2014;66:28–36.CrossRefGoogle Scholar
  67. 67.
    Halldin A, Ander M, Jacobsson M, Hansson S. On a constitutive material model to capture time dependent behavior of cortical bone. World J Mech. Scientific Research Publishing. 2014;4:348–61.CrossRefGoogle Scholar
  68. 68.
    Johnson TPM, Socrate S, Boyce MC. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater. Acta Materialia Inc. 2010;6:4073–80.CrossRefPubMedGoogle Scholar
  69. 69.
    Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech. 2004;37:27–35.CrossRefPubMedGoogle Scholar
  70. 70.
    Natali AN. Dental biomechanics. 2003.Google Scholar
  71. 71.
    Currey JD. Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech. 2004;37:549–56.CrossRefPubMedGoogle Scholar
  72. 72.
    Kemper A, Mcnally C, Kennedy E, Manoogian S, Tech V, Forest W, et al. The material properties of human tibia cortical bone. Biomed Sci Instrum. 2008;44:419–27.PubMedGoogle Scholar
  73. 73.
    Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg. 2010;39:690–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Moreo P, Pérez MA, García-Aznar JM, Doblaré M. Modelling the mechanical behaviour of living bony interfaces. Comput Methods Appl Mech Eng. 2007;196:3300–14.CrossRefGoogle Scholar
  75. 75.
    Moreo P, García-Aznar JM, Doblaré M. Bone ingrowth on the surface of endosseous implants. Part 1: mathematical model. J Theor Biol. 2009;260:1–12.CrossRefPubMedGoogle Scholar
  76. 76.
    Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9.CrossRefPubMedGoogle Scholar
  77. 77.
    • Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Numerical prediction of peri-implant bone adaptation: comparison of mechanical stimuli and sensitivity to modeling parameters. Med Eng Phys. 2016;38:1348–59. Elsevier Ltd. Identification of the role of the octahedral shear strain with respect to bone remodelling. CrossRefPubMedGoogle Scholar
  78. 78.
    Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofacial Radiol. British Institute of Radiology. 2008;37:10–7.CrossRefGoogle Scholar
  79. 79.
    Smith BD. Cone-beam tomography: recent advances and a tutorial review. Opt Eng. International Society for Optics and Photonics. 1990;29:524–34.Google Scholar
  80. 80.
    Vanegas-Acosta JC, Landinez PNS, Garzón-Alvarado DA, MC CR. A finite element method approach for the mechanobiological modeling of the osseointegration of a dental implant. Comput Methods Prog Biomed. Elsevier Ireland Ltd. 2011;101:297–314.CrossRefGoogle Scholar
  81. 81.
    Harrison NM, McDonnell P, Mullins L, Wilson N, O’Mahoney D, McHugh PE. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Biomech Model Mechanobiol. 2013;12:225–41.CrossRefPubMedGoogle Scholar
  82. 82.
    Giner E, Arango C, Vercher A, Javier FF. Numerical modelling of the mechanical behaviour of an osteon with microcracks. J Mech Behav Biomed Mater. Elsevier. 2014;37:109–24.CrossRefPubMedGoogle Scholar
  83. 83.
    Adams JJE, Adams MAMF, Pollintine P, Tobias JH, Wakley GK, Dolan P, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the canadian bone strength working group. J Biomech. 2009;43:136–46.Google Scholar
  84. 84.
    Narra N, Antalainen A-K, Zipprich H, Sandor GK, Wolff J. Microcomputed tomography-based assessment of retrieved dental implants. Int J Oral Maxillofac Implants. 2015;30:308–14.CrossRefPubMedGoogle Scholar
  85. 85.
    Lee J, Ozdoganlar OB, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med EngPhys. Institute of Physics and Engineering in Medicine. 2012;34:1510–20.CrossRefGoogle Scholar
  86. 86.
    Alam K, Mitrofanov AV, Silberschmidt VV. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Med Eng Phys. Institute of Physics and Engineering in Medicine. 2011;33:234–9.Google Scholar
  87. 87.
    Dorogoy A, Rittel D, Shemtov-Yona K, Korabi R. Modeling dental implant insertion. J Mech Behav Biomed Mater. Elsevier. 2017;68:42–50.CrossRefPubMedGoogle Scholar
  88. 88.
    Duyck J, Roesems R, Cardoso MV, Ogawa T, De Villa CG, Vandamme K. Effect of insertion torque on titanium implant osseointegration: an animal experimental study. Clin Oral Implants Res. 2015;26:191–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Miller RE, Tadmor EB. The quasicontinuum method: overview, applications and current directions. J Comput Mater Des. 2002;9:203–39.CrossRefGoogle Scholar
  90. 90.
    Frost HM. A 2003 update of bone physiology and Wolff s law for clinicians. Angle Orthod. 2004:3–15.Google Scholar
  91. 91.
    Wolff J, Narra N, Antalainen A-K, Valášek J, Kaiser J, Sándor GK, et al. Finite element analysis of bone loss around failing implants. Mater Des. 2014;61:177–84.CrossRefGoogle Scholar
  92. 92.
    Eser A, Tonuk E, Akca K, Dard MM, Cehreli MC. Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J Biomech. 2013;46:2250–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Huang HL, Hsu JT, Fuh LJ, Tu MG, Ko CC, Shen YW. Bone stress and interfacial sliding analysis of implant designs on an immediately loaded maxillary implant: a non-linear finite element study. J Dent. 2008;36:409–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniel Rittel
    • 1
    Email author
  • Keren Shemtov-Yona
    • 1
  • Raoof Korabi
    • 1
  1. 1.Faculty of Mechanical EngineeringTechnionHaifaIsrael

Personalised recommendations