Current Oral Health Reports

, Volume 4, Issue 2, pp 142–150 | Cite as

Fit of CAD/CAM Tooth-supported Single Crowns and Fixed Dental Prostheses

  • Evanthia AnadiotiEmail author
  • Catherine Lee
  • Alexa Schweitzer
Digital and Esthetic Dentistry (P Stathopoulou and E Anadioti, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Digital and Esthetic Dentistry


Purpose of Review

Dentistry follows the generational change towards digital technology, and traditional techniques for dental restorative procedures are being influenced. An increasingly large number of CAD/CAM systems are currently used for fabrication of single crowns and fixed dental prostheses in the dental practice. The fit of a full coverage restoration is considered as criterion for long-term success. A review and comparison of the available digital workflows, CAD/CAM systems, and related biomaterial were conducted.

Recent Findings

Despite the variability of the different systems and evaluation methods, the majority of current literature attributes clinically acceptable marginal and internal gap measurements to the full digital workflow.


While the contemporary digital systems appear to provide many advantages along with high-quality prostheses, the existing limitations and the continuous technological advancements fuel intensive research and improvement.


Digital dentistry CAD/CAM crown Digital impression Marginal fit Internal fit CAD/CAM fixed dental prosthesis 


Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Duret F, Preston JD. CAD/CAM imaging in dentistry. Curr Opin Dent. 1991;1(2):150–4.PubMedGoogle Scholar
  2. 2.
    Mormann WH, Brandestini M, Lutz F, Barbakow F. Chairside computer-aided direct ceramic inlays. Quintessence Int. 1989;20(5):329–39.PubMedGoogle Scholar
  3. 3.
    Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J. 2011;56(1):97–106. doi: 10.1111/j.1834-7819.2010.01300.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Logozzo S, Franceschini G, Kilpelä A, Caponi M, Governi L, Blois L. A comparative analysis of intraoral 3D digital scanners for restorative dentistry. Internet J Med Tech 2011;5(1).Google Scholar
  5. 5.
    Scotti R, Cardelli P, Baldissara P, Monaco C. Clinical fitting of CAD/CAM zirconia single crowns generated from digital intraoral impressions based on active wavefront sampling. J Dent. 2011; doi: 10.1016/j.jdent.2011.10.005.PubMedGoogle Scholar
  6. 6.
    Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505–11. doi: 10.1038/sj.bdj.2008.350.CrossRefPubMedGoogle Scholar
  7. 7.
    Ting-Shu S, Jian S. Intraoral digital impression technique: a review. J Prosthodont. 2015;24(4):313–21. doi: 10.1111/jopr.12218.CrossRefPubMedGoogle Scholar
  8. 8.
    McLaren EA, Terry DA. CAD/CAM systems, materials, and clinical guidelines for all-ceramic crowns and fixed partial dentures. Compendium of continuing education in dentistry. Jamesburg, N J 1995. 2002;23(7):637–54.Google Scholar
  9. 9.
    Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res. 2013;24(1):111–5. doi: 10.1111/j.1600-0501.2012.02430.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Schwartz NL, Whitsett LD, Berry TG, Stewart JL. Unserviceable crowns and fixed partial dentures: life-span and causes for loss of serviceability. J Am Dent Assoc. 1970;81(6):1395–401.CrossRefPubMedGoogle Scholar
  11. 11.
    Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent. 1966;16(2):297–305. doi: 10.1016/0022-3913(66)90082-5.CrossRefPubMedGoogle Scholar
  12. 12.
    McLean JW, von Fraunhofer JA, Von F. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971;131(3):107–11. doi: 10.1038/sj.bdj.4802708.CrossRefPubMedGoogle Scholar
  13. 13.
    Tuntiprawon M, Tuntiprawon M, Wilson PR, Wilson PR. The effect of cement thickness on the fracture strength of all-ceramic crowns. Aust Dent J. 1995;40(1):17–21. doi: 10.1111/j.1834-7819.1995.tb05607.x.CrossRefPubMedGoogle Scholar
  14. 14.
    Miwa A, Kori H, Tsukiyama Y, Kuwatsuru R, Matsushita Y, Koyano K. Fit of e.max crowns fabricated using conventional and CAD/CAM technology: a comparative study. Int J Prosthodont. 2016;29(6):602–7. doi: 10.11607/ijp.4865.CrossRefPubMedGoogle Scholar
  15. 15.
    Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent. 1990;64(1):18–24. doi: 10.1016/0022-3913(90)90147-5.CrossRefPubMedGoogle Scholar
  16. 16.
    Hayashi M, Wilson NHF, Ebisu S, Watts DC. Influence of explorer tip diameter in identifying restoration margin discrepancies. J Dent. 2005;33(8):669–74. doi: 10.1016/j.jdent.2005.01.006.CrossRefPubMedGoogle Scholar
  17. 17.
    Leknius C, Giusti L, Chambers D, Hong C. Effects of clinical experience and explorer type on judged crown margin acceptability. J Prosthodont. 2010;19(2):138–43. doi: 10.1111/j.1532-849X.2009.00536.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Molin M, Molin M, Karlsson S, Karlsson S. The fit of gold inlays and three ceramic inlay systems: a clinical and in vitro study. Acta Odontol Scand. 1993;51(4):201–6. doi: 10.3109/00016359309040568.CrossRefPubMedGoogle Scholar
  19. 19.
    Boening KW, Wolf BH, Schmidt AE, Kästner K, Walter MH, et al. J Prosthet Dent. 2000;84(4):419–24. doi: 10.1067/mpr.2000.109125.CrossRefPubMedGoogle Scholar
  20. 20.
    Rahmé HV, Tehini GE, Adib SM, Ardo AS, Rifai KT. In vitro evaluation of the “replica technique” in the measurement of the fit of Procera® crowns. J Contemp Dent Pract. 2008;9(2):025–32.Google Scholar
  21. 21.
    Holst S, Karl M, Wichmann M, Matta RT. A new triple-scan protocol for 3D fit assessment of dental restorations. Quintessence international (Berlin, Germany: 1985). 2011;42(8):651–7.Google Scholar
  22. 22.
    Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont. 2013;22(5):419–28. doi: 10.1111/jopr.12006.CrossRefPubMedGoogle Scholar
  23. 23.
    Giannetopoulos S, van Noort R, Tsitrou E. Evaluation of the marginal integrity of ceramic copings with different marginal angles using two different CAD/CAM systems. J Dent. 2010;38(12):980–6. doi: 10.1016/j.jdent.2010.08.011.CrossRefPubMedGoogle Scholar
  24. 24.
    Krasanaki M, Pelekanos S, Andreiotelli M, Koutayas S, Eliades G. X-Ray microtomographic evaluation of the influence of two preparation types on marginal fit of CAD/CAM alumina copings: a pilot study. Int J Prosthodont. 2012;25(2):170–2.PubMedGoogle Scholar
  25. 25.
    Vojdani M, Torabi K, Farjood E, Khaledi A. Comparison the marginal and internal fit of metal copings cast from wax patterns fabricated by CAD/CAM and conventional wax up techniques. J Dent (Shiraz). 2013 Sep;14(3):118–29.Google Scholar
  26. 26.
    Jalali H, Sadighpour L, Miri A, Shamshiri AR. Comparison of marginal fit and fracture strength of a CAD/CAM zirconia crown with two preparation designs. Journal of dentistry (Tehran, Iran). 2015;12(12):874.Google Scholar
  27. 27.
    Kane L, Chronaios D, Sierraalta M, George F. Marginal and internal adaptation of milled cobalt–chromium copings. J Prosthet Dent. 2015;114(5):680–5. doi: 10.1016/j.prosdent.2015.04.020.CrossRefPubMedGoogle Scholar
  28. 28.
    Souza ROA, Özcan M, Pavanelli CA, Buso L, Lombardo GHL, Michida SMA, et al. Marginal and internal discrepancies related to margin design of ceramic crowns fabricated by a CAD/CAM system. J Prosthodont. 2012;21(2):94–100. doi: 10.1111/j.1532-849X.2011.00793.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Renne W, McGill ST, Forshee KV, Defee MR, Mennito AS. Predicting marginal fit of CAD/CAM crowns based on the presence or absence of common preparation errors. J Prosthet Dent. 2012;108(5):310–5. doi: 10.1016/S0022-3913(12)60183-8.CrossRefPubMedGoogle Scholar
  30. 30.
    • Renne W, Wolf B, Kessler R, McPherson K, Mennito AS. Evaluation of the marginal fit of CAD/CAM crowns fabricated using two different chairside CAD/CAM systems on preparations of varying quality. J Esthet Restor Dent. 2015;27(4):194–202. doi: 10.1111/jerd.12148.CrossRefPubMedGoogle Scholar
  31. 31.
    SHIM JS, LEE JS, LEE JY, CHOI YJ, SHIN SW, RYU JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci. 2015;23(5):515–22. doi: 10.1590/1678-775720150081.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pak H, Han J, Lee J, Kim S, Yang J. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. The Journal of Advanced Prosthodontics. 2010;2(2):33–8. doi: 10.4047/jap.2010.2.2.33.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Torabil K, Vojdani M, Giti R, Taghva M, Pardis S. The effect of various veneering techniques on the marginal fit of zirconia copings. The Journal of Advanced Prosthodontics. 2015;7(3):233–9. doi: 10.4047/jap.2015.7.3.233.CrossRefGoogle Scholar
  34. 34.
    Vojdani M, Safari A, Mohaghegh M, Pardis S, Mahdavi F. The effect of porcelain firing and type of finish line on the marginal fit of zirconia copings. J Dent. 2015;16(2):113–20.Google Scholar
  35. 35.
    Kim J, Oh S, Uhm S. Effect of the crystallization process on the marginal and internal gaps of lithium disilicate CAD/CAM crowns. Biomed Res Int. 2016:1–6. doi: 10.1155/2016/8635483.
  36. 36.
    Güth J, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Investig. 2013;17(4):1201–8. doi: 10.1007/s00784-012-0795-0.CrossRefPubMedGoogle Scholar
  37. 37.
    Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J Dent. 2010;38(7):553–9. doi: 10.1016/j.jdent.2010.03.015.CrossRefPubMedGoogle Scholar
  38. 38.
    Pradies G, Zarauz C, Valverde A, Ferreiroa A, Martinez-Rus F. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. J Dent. 2015;43(2):201–8. doi: 10.1016/j.jdent.2014.12.007.CrossRefPubMedGoogle Scholar
  39. 39.
    Brawek PK, Wolfart S, Endres L, Kirsten A, Reich S. The clinical accuracy of single crowns exclusively fabricated by digital workflow—the comparison of two systems. Clin Oral Investig. 2013;17(9):2119–25. doi: 10.1007/s00784-013-0923-5.CrossRefPubMedGoogle Scholar
  40. 40.
    Boeddinghaus M, Breloer ES, Rehmann P, Wostmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015;19(8):2027–34. doi: 10.1007/s00784-015-1430-7.CrossRefPubMedGoogle Scholar
  41. 41.
    Rödiger M, Heinitz A, Bürgers R, Rinke S. Fitting accuracy of zirconia single crowns produced via digital and conventional impressions—a clinical comparative study. Clin Oral Investig. 2016:1–9. doi: 10.1007/s00784-016-1924-y.
  42. 42.
    Berrendero S, Salido MP, Valverde A, Ferreiroa A, Pradíes G. Influence of conventional and digital intraoral impressions on the fit of CAD/CAM-fabricated all-ceramic crowns. Clin Oral Investig 2016:1–8 Doi: 10.1007/s00784-016-1714-6.x
  43. 43.
    Nam S, Yoon M, Kim W, Ryu G, Bang M, Huh J. Marginal and internal fit of conventional metal-ceramic and lithium disilicate CAD/CAM crowns. Int J Prosthodont. 2015;28(5):519–21. doi: 10.11607/ijp.4089.CrossRefPubMedGoogle Scholar
  44. 44.
    Anadioti E, Aquilino S, Gratton D, Holloway J, Denry I, Thomas G, et al. Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent. 2015;113(4):304–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Ahrberg D, Lauer HC, Ahrberg M, et al. Evaluation of fit and efficiency of CAD/CAM fabricated all-ceramic restorations based on direct and indirect digitalization: a double-blinded, randomized clinical trial. Clinical Oral Investigations. 2016;20(2):291–300.CrossRefPubMedGoogle Scholar
  46. 46.
    das Neves F, Carneiro T, do Prado C, Prudente M, Zancope K, Davi L, et al. Micrometric precision of prosthetic dental crowns obtained by optical scanning and computer-aided designing/computer-aided manufacturing system. J Biomed Opt. 2014;19(8):088003. doi: 10.1117/1.JBO.19.8.088003.CrossRefPubMedGoogle Scholar
  47. 47.
    Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent. 2014;112(3):555–60. doi: 10.1016/j.prosdent.2013.12.002.CrossRefPubMedGoogle Scholar
  48. 48.
    Ortega R, Gonzalo E, Gomez-Polo M, Suarez M. Marginal and internal discrepancies of posterior zirconia-based crowns fabricated with three different CAD/CAM systems versus metal-ceramic. Int J Prosthodont. 2015;28(5):509–11. doi: 10.11607/ijp.4359.CrossRefPubMedGoogle Scholar
  49. 49.
    Alfaro DP, Ruse ND, Carvalho RM, Wyatt CC. Assessment of the internal fit of lithium disilicate crowns using micro-CT. J Prosthodont. 2015;24(5):381–6. doi: 10.1111/jopr.12274.CrossRefPubMedGoogle Scholar
  50. 50.
    Pedroche, LO. Marginal and internal fit of zirconia copings obtained using different digital scanning methods. Brazilian oral research 2016;30(1).Google Scholar
  51. 51.
    Seelbach P, Brueckel C, Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig. 2013;17(7):1759–64. doi: 10.1007/s00784-012-0864-4.CrossRefPubMedGoogle Scholar
  52. 52.
    Tidehag P, Ottosson K, Sjogren G, Institutionen för odontologi, Umeå universitet, Medicinska fakulteten. Accuracy of ceramic restorations made using an in-office optical scanning technique: an in vitro study. Oper Dent. 2014;39(3):308–16. doi: 10.2341/12-309-L.CrossRefPubMedGoogle Scholar
  53. 53.
    Neves FD, Prado CJ, Prudente MS, Carneiro TAPN, Zancopé K, Davi LR, et al. Micro-computed tomography evaluation of marginal fit of lithium disilicate crowns fabricated by using chairside CAD/CAM systems or the heat-pressing technique. J Prosthet Dent. 2014;112(5):1134–40. doi: 10.1016/j.prosdent.2014.04.028.CrossRefPubMedGoogle Scholar
  54. 54.
    Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent. 2015;114(4):554–9. doi: 10.1016/j.prosdent.2015.04.001.CrossRefPubMedGoogle Scholar
  55. 55.
    Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent. 2010;104(4):216–27. doi: 10.1016/S0022-3913(10)60128-X.CrossRefPubMedGoogle Scholar
  56. 56.
    • Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry I, Thomas GW, et al. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont. 2014;23(8):610–7. doi: 10.1111/jopr.12180.CrossRefPubMedGoogle Scholar
  57. 57.
    An S, Kim S, Choi H, Lee J, Moon H. Evaluating the marginal fit of zirconia copings with digital impressions with an intraoral digital scanner. J Prosthet Dent. 2014;112(5):1171–5. doi: 10.1016/j.prosdent.2013.12.024.CrossRefPubMedGoogle Scholar
  58. 58.
    Dahl BE, Rønold HJ, Dahl JE. Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol. J Prosthet Dent. 2016; doi: 10.1016/j.prosdent.2016.06.017.PubMedGoogle Scholar
  59. 59.
    Vennerstrom M, Fakhary M, von Steyern P. The fit of crowns produced using digital impression systems. Swed Dent J. 2014;38(3):101–10.PubMedGoogle Scholar
  60. 60.
    Boitelle P, Tapie L, Mawussi B, Fromentin O. 3D fitting accuracy evaluation of CAD/CAM copings—comparison with spacer design settings. Int J Comput Dent. 2016;19(1):27–43.PubMedGoogle Scholar
  61. 61.
    Almeida e Silva JS, Erdelt K, Edelhoff D, Araújo É, Stimmelmayr M, Vieira LCC, et al. Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig. 2014;18(2):515–23. doi: 10.1007/s00784-013-0987-2.CrossRefPubMedGoogle Scholar
  62. 62.
    Ueda K, Beuer F, Stimmelmayr M, Erdelt K, Keul C, Guth JF. Fit of 4-unit FDPs from CoCr and zirconia after conventional and digital impressions. Clin Oral Investig. 2016;20(2):283–9. doi: 10.1007/s00784-015-1513-5.CrossRefPubMedGoogle Scholar
  63. 63.
    Shembesh M, Ali A, Finkelman M, Weber H, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont. 2016; doi: 10.1111/jopr.12446. PubMedGoogle Scholar
  64. 64.
    Su T, Sun J. Comparison of marginal and internal fit of 3-unit ceramic fixed dental prostheses made with either a conventional or digital impression. J Prosthet Dent. 2016;116(3):362–7. doi: 10.1016/j.prosdent.2016.01.018.CrossRefPubMedGoogle Scholar
  65. 65.
    Lopez-Suarez C, Gonzalo E, Pelaez J, Serrano B, Suarez MJ. Marginal vertical discrepancies of monolithic and veneered zirconia and metal-ceramic three-unit posterior fixed dental prostheses. Int J Prosthodont. 2016;29(3):256–8. doi: 10.11607/ijp.4541.CrossRefPubMedGoogle Scholar
  66. 66.
    Svanborg P, Skjerven H, Carlsson P, Eliasson A, Karlsson S, Örtorp A. Marginal and internal fit of cobalt–chromium fixed dental prostheses generated from digital and conventional impressions. International Journal of Dentistry. 2014;2014:1–9. doi: 10.1155/2014/534382.CrossRefGoogle Scholar
  67. 67.
    Büchi D, Ebler S, Hammerle C, Sailer I. Marginal and internal fit of curved anterior CAD/CAM-milled zirconia fixed dental prostheses: an in-vitro study. Quintessence international (Berlin, Germany: 1985). 2014;45(10):837–46.Google Scholar
  68. 68.
    Song T, Kwon T, Yang J, Han J, Lee J, Kim S, et al. Marginal fit of anterior 3-unit fixed partial zirconia restorations using different CAD/CAM systems. The Journal of Advanced Prosthodontics. 2013;5(3):219–25. doi: 10.4047/jap.2013.5.3.219.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Mello C, Santiago Junior JF, Santiago JF, Galhano G. Analysis of vertical marginal adaptation of zirconia fixed dental prosthesis frameworks fabricated by the CAD/CAM system: a randomized, double-blind study. Int J Prosthodont. 2016;29(2):157–60.CrossRefPubMedGoogle Scholar
  70. 70.
    Kim K, Kim J, Kim W, Kim J. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J Prosthet Dent. 2014;112(6):1432–6. doi: 10.1016/j.prosdent.2014.07.002.CrossRefPubMedGoogle Scholar
  71. 71.
    Lee J, Choi S, Kim M, Kim H. Effect of span length on the fit of zirconia framework fabricated using CAD/CAM system. The journal of advanced prosthodontics. 2013;5(2):118.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Evanthia Anadioti
    • 1
    Email author
  • Catherine Lee
    • 1
  • Alexa Schweitzer
    • 1
  1. 1.Department of Preventive and Restorative SciencesUniversity of Pennsylvania School of Dental MedicinePhiladelphiaUSA

Personalised recommendations