Current Oral Health Reports

, Volume 4, Issue 1, pp 34–43 | Cite as

Current Status of Regenerative Periodontal Treatment

  • Andreas Stavropoulos
  • Anton SculeanEmail author
Orodental Regenerative Medicine (M Bartold, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Orodental Regenerative Medicine


Purpose of Review

Periodontal regenerative therapy aims to completely restore the tooth’s supporting tissues (e.g., periodontal ligament, root cementum, alveolar bone, and gingiva) which have been lost following periodontal disease or trauma. The histologic outcomes should translate in substantial clinical improvements evidenced by probing depth reduction, gain in clinical attachment level, and bone fill. The present review provides a brief overview of the current status of periodontal regenerative therapy.

Recent Findings

There is plenty of evidence to support the use of guided tissue regeneration (GTR) techniques and the application of enamel matrix proteins (EMD) onto the exposed root result in true periodontal regenerative. The use of various growth factors and autologous blood concentrates for periodontal regeneration also have produced positive results, but more studies are needed. In general, both GTR and EMD, alone or in combination with bone grafts or substitutes, result in larger clinical improvements compared to conventional periodontal treatment for deep intrabony and furcation Class II defects. Important factors that negatively impact on the clinical outcomes of periodontal regeneration procedures are smoking, large number of remaining sites with bleeding on probing, bad oral hygiene, and increased tooth mobility.


The magnitude of improvement arising from periodontal regenerative techniques and procedures depends largely on operator skills, not only in terms of dexterity but also on the ability to choose the best approach regarding the surgical technique and the regenerative technology depending on patient- and site-specific criteria. The clinical improvements after regenerative treatment can be preserved on a long-term basis on the majority of treated sites, provided that patients do not smoke, keep high oral hygiene standards, and attend regularly SPT.


Periodontal regeneration Intrabony Furcation GTR EMD PRP 


Compliance with Ethical Standards

Conflict of Interest

Andreas Stavropoulos received nonfinancial support from Institute Straumann AG, Geistlick Pharma AG, and Scil Technology GmbH outside of the submitted work. Anton Sculean reports financial support in the form of a research grant from Institute Straumann AG outside of the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Laurell L, Bose M, Graziani F, Tonetti M, Berglundh T. The structure of periodontal tissues formed following guided tissue regeneration therapy of intra-bony defects in the monkey. J Clin Periodontol. 2006;33(8):596–603.CrossRefPubMedGoogle Scholar
  2. 2.
    •• Wikesjö UM, Polimeni G, Xiropaidis AV, Stavropoulos A. Periodontal wound healing/regeneration. In: Sculean A, editor. Periodontal regenerative therapy. 1st ed. London: Quintessence Publishing; 2010. p. 25–45 .This book chapter provides an extended overview of periodontal wound healing/regenerationGoogle Scholar
  3. 3.
    Armitage GC. Periodontal diseases: diagnosis. Ann Periodontol. 1996;1(1):37–215.CrossRefPubMedGoogle Scholar
  4. 4.
    Tonetti MS, Claffey N, European Workshop in Periodontology group C. Advances in the progression of periodontitis and proposal of definitions of a periodontitis case and disease progression for use in risk factor research. Group C consensus report of the 5th European Workshop in Periodontology. J Clin Periodontol. 2005;32(Suppl 6):210–3.CrossRefPubMedGoogle Scholar
  5. 5.
    Papapanou PN, Wennström JL. The angular bony defect as indicator of further alveolar bone loss. J Clin Periodontol. 1991;18(5):317–22.CrossRefPubMedGoogle Scholar
  6. 6.
    McGuire MK, Nunn ME. Prognosis versus actual outcome. III. The effectiveness of clinical parameters in accurately predicting tooth survival. J Periodontol. 1996;67(7):666–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Dannewitz B, Krieger JK, Hüsing J, Eickholz P. Loss of molars in periodontally treated patients: a retrospective analysis five years or more after active periodontal treatment. J Clin Periodontol. 2006;33(1):53–61.CrossRefPubMedGoogle Scholar
  8. 8.
    •• Matuliene G, Pjetursson BE, Salvi GE, Schmidlin K, Brägger U, Zwahlen M, et al. Influence of residual pockets on progression of periodontitis and tooth loss: results after 11 years of maintenance. J Clin Periodontol. 2008;35(8):685–95. This manuscript clearly shows the negative influence of deep pockets and furcation involvement on tooth survivalCrossRefPubMedGoogle Scholar
  9. 9.
    Pretzl B, Kaltschmitt J, Kim T-S, Reitmeir P, Eickholz P. Tooth loss after active periodontal therapy. 2: tooth-related factors. J Clin Periodontol. 2008;35(2):175–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Haffajee AD, Socransky SS, Goodson JM. Clinical parameters as predictors of destructive periodontal disease activity. J Clin Periodontol. 1983;10(3):257–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Halazonetis TD, Haffajee AD, Socransky SS. Relationship of clinical parameters to attachment loss in subsets of subjects with destructive periodontal diseases. J Clin Periodontol. 1989;16(9):563–8.CrossRefPubMedGoogle Scholar
  12. 12.
    •• Axelsson P, Nystrom B, Lindhe J. The long-term effect of a plaque control program on tooth mortality, caries and periodontal disease in adults. Results after 30 years of maintenance. J Clin Periodontol. 2004;31(9):749–57. This manuscript shows the importance of supportive periodontal treatment for the long-term preservation of the successful outcomes of periodontal treatmentCrossRefPubMedGoogle Scholar
  13. 13.
    Matuliene G, Studer R, Lang NP, Schmidlin K, Pjetursson BE, Salvi GE, et al. Significance of periodontal risk assessment in the recurrence of periodontitis and tooth loss. J Clin Periodontol. 2010;37(2):191–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Loos B, Nylund K, Claffey N, Egelberg J. Clinical effects of root debridement in molar and non-molar teeth. A 2-year follow-up. J Clin Periodontol. 1989;16(8):498–504.CrossRefPubMedGoogle Scholar
  15. 15.
    Nordland P, Garrett S, Kiger R, Vanooteghem R, Hutchens LH, Egelberg J. The effect of plaque control and root debridement in molar teeth. J Clin Periodontol. 1987;14(4):231–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Caton JG, Zander HA. The attachment between tooth and gingival tissues after periodic root planing and soft tissue curettage. J Periodontol. 1979;50(9):462–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Bowers GM, Chadroff B, Carnevale R, Mellonig J, Corio R, Emerson J, et al. Histologic evaluation of new attachment apparatus formation in humans. Part I. J Periodontol. 1989;60(12):664–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Wilson TG, Carnio J, Schenk R, Myers G. Absence of histologic signs of chronic inflammation following closed subgingival scaling and root planing using the dental endoscope: human biopsies—a pilot study. J Periodontol. 2008;79(11):2036–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Trombelli L, Farina R. Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol. 2008;35(8 Suppl):117–35.CrossRefPubMedGoogle Scholar
  20. 20.
    Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006;(2):CD001724.Google Scholar
  21. 21.
    Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev. 2009;(4):CD003875.Google Scholar
  22. 22.
    Murphy KG, Gunsolley JC. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol. 2003;8(1):266–302.CrossRefPubMedGoogle Scholar
  23. 23.
    Tonetti MS, Cortellini P, Suvan JE, Adriaens P, Baldi C, Dubravec D, et al. Generalizability of the added benefits of guided tissue regeneration in the treatment of deep intrabony defects. Evaluation in a multi-center randomized controlled clinical trial. J Periodontol. 1998;69(11):1183–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Tonetti MS, Lang NP, Cortellini P, Suvan JE, Adriaens P, Dubravec D, et al. Enamel matrix proteins in the regenerative therapy of deep intrabony defects. J Clin Periodontol. 2002;29(4):317–25.CrossRefPubMedGoogle Scholar
  25. 25.
    Cortellini P, Tonetti MS. Clinical performance of a regenerative strategy for intrabony defects: scientific evidence and clinical experience. J Periodontol. 2005;76(3):341–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Trombelli L, Heitz-Mayfield LJA, Needleman I, Moles D, Scabbia A. A systematic review of graft materials and biological agents for periodontal intraosseous defects. J Clin Periodontol. 2002;29(Suppl 3):117–35. discussion 160–2CrossRefPubMedGoogle Scholar
  27. 27.
    Karring T, Nyman S, Lindhe J. Healing following implantation of periodontitis affected roots into bone tissue. J Clin Periodontol. 1980;7(2):96–105.CrossRefPubMedGoogle Scholar
  28. 28.
    Sculean A, Nikolidakis D, Nikou G, Ivanovic A, Chapple ILC, Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontol. 2015;68(1):182–216.CrossRefGoogle Scholar
  29. 29.
    Stavropoulos A, Windisch P, Gera I, Sculean A. Guided tissue regeneration: biological concept and clinical application in intrabony defects. In: Sculean A, editor. Periodontal regenerative therapy. 1st ed. London: Quintessence Publishing; 2010. p. 47–56.Google Scholar
  30. 30.
    Aichelmann-Reidy ME, Reynolds MA. Predictability of clinical outcomes following regenerative therapy in intrabony defects. J Periodontol. 2008;79(3):387–93.CrossRefPubMedGoogle Scholar
  31. 31.
    Stavropoulos A. Guided tissue regeneration in combination with deproteinized bovine bone and gentamicin. PhD Thesis; Dept. of Periodontology, School of Dentistry, Aarhus University; 2002.Google Scholar
  32. 32.
    Kim C-S, Choi S-H, Chai J-K, Cho K-S, Moon I-S, Wikesjö UME, et al. Periodontal repair in surgically created intrabony defects in dogs: influence of the number of bone walls on healing response. J Periodontol. 2004;75(2):229–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Eickholz P. Prognostic and risk factors for periodontal regenerative therapy. In: Sculean A, editor. Periodontal regenerative therapy. 1st ed. London: Quintessence Publishing; 2010. p. 231–9.Google Scholar
  34. 34.
    Eickholz P, Jepsen S. Guided tissue regeneration: application in furcation defects. In: Sculean A, editor. Periodontal regenerative therapy. 1st ed. London: Quintessence Publishing; 2010. p. 57–67.Google Scholar
  35. 35.
    Huynh-Ba G, Kuonen P, Hofer D, Schmid J, Lang NP, Salvi GE. The effect of periodontal therapy on the survival rate and incidence of complications of multirooted teeth with furcation involvement after an observation period of at least 5 years: a systematic review. J Clin Periodontol. 2009;36(2):164–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Ling LJ, Lai YH, Hwang H, Chen H. Response of regenerative tissues to plaque: a histological study in monkeys. J Periodontol. 1994;65(8):781–7.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Kostopoulos L, Karring T. Susceptibility of GTR-regenerated periodontal attachment to ligature-induced periodontitis. J Clin Periodontol. 2004;31(5):336–40. This manuscript demonstrated that regenerated periodontal tissues are not more vulnerable to periodontal inflammation than the pristine periodontiumCrossRefPubMedGoogle Scholar
  38. 38.
    Cortellini P, Paolo G, Prato P, Tonetti MS. Long-term stability of clinical attachment following guided tissue regeneration and conventional therapy. J Clin Periodontol. 1996;23(2):106–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Hammarström L, Sculean A, Lyngstadaas SP. The biological background of Emdogain. In: Sculean A, editor. Periodontal regenerative therapy. 1st ed. London: Quintessence Publishing; 2010. p. 69–87.Google Scholar
  40. 40.
    Hammarström L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol. 1997;24(9 Pt 2):669–77.CrossRefPubMedGoogle Scholar
  41. 41.
    Gestrelius S, Andersson C, Johansson AC, Persson E, Brodin A, Rydhag L, et al. Formulation of enamel matrix derivative for surface coating. Kinetics and cell colonization. J Clin Periodontol. 1997;24(9 Pt 2):678–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Barrett EJ, Kenny DJ, Tenenbaum HC, Sigal MJ, Johnston DH. Replantation of permanent incisors in children using Emdogain. Dent Traumatol. 2005;21(5):269–75.CrossRefPubMedGoogle Scholar
  43. 43.
    Gutierrez MA, Mellonig JT, Cochran DL. Evaluation of enamel matrix derivative as an adjunct to non-surgical periodontal therapy. J Clin Periodontol. 2003;30(8):739–45.CrossRefPubMedGoogle Scholar
  44. 44.
    Mombelli A, Brochut P, Plagnat D, Casagni F, Giannopoulou C. Enamel matrix proteins and systemic antibiotics as adjuncts to non-surgical periodontal treatment: clinical effects. J Clin Periodontol. 2005;32(3):225–30.CrossRefPubMedGoogle Scholar
  45. 45.
    Sculean A, Windisch P, Keglevich T, Gera I. Histologic evaluation of human intrabony defects following non-surgical periodontal therapy with and without application of an enamel matrix protein derivative. J Periodontol. 2003;74(2):153–60.CrossRefPubMedGoogle Scholar
  46. 46.
    Sculean A, Windisch P, Keglevich T, Fabi B, Lundgren E, Lyngstadaas PS. Presence of an enamel matrix protein derivative on human teeth following periodontal surgery. Clin Oral Invest. 2002;6(3):183–7.CrossRefGoogle Scholar
  47. 47.
    Miron RJ, Bosshardt DD, Laugisch O, Katsaros C, Buser D, Sculean A. Enamel matrix protein adsorption to root surfaces in the presence or absence of human blood. J Periodontol. 2012;83:885–92.Google Scholar
  48. 48.
    Sculean A, Alessandri R, Myron R, Salvi GE, Bosshardt D. Enamel matrix proteins and periodontal wound healing and regeneration. Clinical Advances in Periodontics. 2011;1(2):1–17.CrossRefGoogle Scholar
  49. 49.
    Jepsen S, Heinz B, Jepsen K, Arjomand M, Hoffmann T, Richter S, et al. A randomized clinical trial comparing enamel matrix derivative and membrane treatment of buccal class II furcation involvement in mandibular molars. Part I: study design and results for primary outcomes. J Periodontol. 2004;75(8):1150–60.CrossRefPubMedGoogle Scholar
  50. 50.
    Casarin RCV, Del Peloso Ribeiro E, Nociti FH, Sallum AW, Sallum EA, Ambrosano GMB, et al. A double-blind randomized clinical evaluation of enamel matrix derivative proteins for the treatment of proximal class-II furcation involvements. J Clin Periodontol. 2008;35(5):429–37.CrossRefPubMedGoogle Scholar
  51. 51.
    Sanz M, Tonetti MS, Zabalegui I, Sicilia A, Blanco J, Rebelo H, et al. Treatment of intrabony defects with enamel matrix proteins or barrier membranes: results from a multicenter practice-based clinical trial. J Periodontol. 2004;75(5):726–33.CrossRefPubMedGoogle Scholar
  52. 52.
    Siciliano VI, Andreuccetti G, Siciliano AI, Blasi A, Sculean A, Salvi GE. Clinical outcomes after treatment of non-contained intrabony defects with enamel matrix derivative or guided tissue regeneration: a 12-month randomized controlled clinical trial. J Periodontol. 2011;82(1):62–71.CrossRefPubMedGoogle Scholar
  53. 53.
    Sculean A, Kiss A, Miliauskaite A, Schwarz F, Arweiler NB, Hannig M. Ten-year results following treatment of intra-bony defects with enamel matrix proteins and guided tissue regeneration. J Clin Periodontol. 2008;35(9):817–24.CrossRefPubMedGoogle Scholar
  54. 54.
    • Miron RJ, Sculean A, Cochran DL, Froum S, Zucchelli G, Nemcovsky C, et al. 20 years of enamel matrix derivative: the past, the present and the future. J Clin Periodontol. 2016;43(8):668–83. This manuscript provides a comprehensive review of enamel matrix proteins in regenerative periodontal treatmentCrossRefPubMedGoogle Scholar
  55. 55.
    Miron RJ, Shuang Y, Sculean A, Buser D, Chandad F, Zhang Y. Gene array of PDL cells exposed to Osteogain in combination with a bone grafting material. Clin Oral Invest. 2016;20(8):2037–43.Google Scholar
  56. 56.
    Miron RJ, Fujioka-Kobayashi M, Zhang Y, Caballé-Serrano J, Shirakata Y, Bosshardt DD, et al. Osteogain improves osteoblast adhesion, proliferation and differentiation on a bovine-derived natural bone mineral. Clin Oral Implants Res. 2016; doi: 10.1111/clr.12802.Google Scholar
  57. 57.
    Zhang Y, Jing D, Buser D, Sculean A, Chandad F, Miron RJ. Bone grafting material in combination with Osteogain for bone repair: a rat histomorphometric study. Clin Oral Invest. 2016;20(3):589–95.CrossRefGoogle Scholar
  58. 58.
    Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials - biological foundation and preclinical evidence: a systematic review. J Clin Periodontol. 2008;35(8 Suppl):106–16.CrossRefPubMedGoogle Scholar
  59. 59.
    Kao RT, Nares S, Reynolds MA. Periodontal regeneration—intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86(2 Suppl):S77–104.CrossRefPubMedGoogle Scholar
  60. 60.
    Stavropoulos A, Karring T. Guided tissue regeneration combined with a deproteinized bovine bone mineral (bio-Oss) in the treatment of intrabony periodontal defects: 6-year results from a randomized-controlled clinical trial. J Clin Periodontol. 2010;37(2):200–10.CrossRefPubMedGoogle Scholar
  61. 61.
    Matarasso M, Iorio Siciliano V, Blasi A, Ramaglia L, Salvi GE, Sculean A. Enamel matrix derivative and bone grafts for periodontal regeneration of intrabony defects. A systematic review and meta-analysis. Clin Oral Invest. 2015;19(7):1581–93.CrossRefGoogle Scholar
  62. 62.
    Iorio Siciliano V, Andreuccetti G, Blasi A, Matarasso M, Sculean A, Salvi GE. Clinical outcomes following regenerative therapy of non-contained intrabony defects using a deproteinized bovine bone mineral combined with either enamel matrix derivative or collagen membrane. J Periodontol. 2014;85(10):1342–50.CrossRefPubMedGoogle Scholar
  63. 63.
    Cortellini P, Tonetti MS. Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: a randomized-controlled trial in intra-bony defects. J Clin Periodontol. 2011;38(4):365–73.CrossRefPubMedGoogle Scholar
  64. 64.
    • Stavropoulos A, Wikesjö UME. Growth and differentiation factors for periodontal regeneration: a review on factors with clinical testing. J Periodontal Res. 2012;47(5):545–53. This manuscript provides an extended review on the use of growth and differentiation factors in regenerative periodontal treatmentCrossRefPubMedGoogle Scholar
  65. 65.
    Nevins M, Giannobile WV, McGuire MK, Kao RT, Mellonig JT, Hinrichs JE, et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol. 2005;76(12):2205–15.CrossRefPubMedGoogle Scholar
  66. 66.
    Nevins M, Kao RT, McGuire MK, McClain PK, Hinrichs JE, McAllister BS, et al. Platelet-derived growth factor promotes periodontal regeneration in localized osseous defects: 36-month extension results from a randomized, controlled, double-masked clinical trial. J Periodontol. 2013;84(4):456–64.CrossRefPubMedGoogle Scholar
  67. 67.
    Ridgway HK, Mellonig JT, Cochran DL. Human histologic and clinical evaluation of recombinant human platelet-derived growth factor and beta-tricalcium phosphate for the treatment of periodontal intraosseous defects. J Periodontol. 2008;28(2):171–9.Google Scholar
  68. 68.
    Kitamura M, Nakashima K, Kowashi Y, Fujii T, Shimauchi H, Sasano T, et al. Periodontal tissue regeneration using fibroblast growth factor-2: randomized controlled phase II clinical trial. PLoS One. 2008;3(7):e2611.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, et al. FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res. 2011;90(1):35–40.CrossRefPubMedGoogle Scholar
  70. 70.
    Cochran DL, Oh TJ, Mills MP, Clem DS, McClain PK, Schallhorn RA, et al. A randomized clinical trial evaluating rh-FGF-2/β-TCP in periodontal defects. J Dent Res. 2016;95(5):523–30.CrossRefPubMedGoogle Scholar
  71. 71.
    Stavropoulos A, Windisch P, Gera I, Capsius B, Sculean A, Wikesjö UME. A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration. J Clin Periodontol. 2011;38(11):1044–54.CrossRefPubMedGoogle Scholar
  72. 72.
    Del Corso M, Vervelle A, Simonpieri A, Jimbo R, Inchingolo F, Sammartino G, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: periodontal and dentoalveolar surgery. Curr Pharm Biotechnol. 2012;13(7):1207–30.CrossRefPubMedGoogle Scholar
  73. 73.
    Simonpieri A, Del Corso M, Vervelle A, Jimbo R, Inchingolo F, Sammartino G, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol. 2012;13(7):1231–56.CrossRefPubMedGoogle Scholar
  74. 74.
    Marx RE. Platelet-rich plasma: evidence to support its use. YJOMS. 2004;62(4):489–96.Google Scholar
  75. 75.
    Döri F, Kovács V, Arweiler NB, Húszár T, Gera I, Nikolidakis D, et al. Effect of platelet-rich plasma on the healing of intrabony defects treated with an anorganic bovine bone mineral: a pilot study. J Periodontol. 2009;80(10):1599–605.CrossRefPubMedGoogle Scholar
  76. 76.
    Okuda K, Tai H, Tanabe K, Suzuki H, Sato T, Kawase T, et al. Platelet-rich plasma combined with a porous hydroxyapatite graft for the treatment of intrabony periodontal defects in humans: a comparative controlled clinical study3. J Periodontol. 2005;76(6):890–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Kotsovilis S, Markou N, Pepelassi E, Nikolidakis D. The adjunctive use of platelet-rich plasma in the therapy of periodontal intraosseous defects: a systematic review. J Periodontal Res. 2010;45(3):428–43.CrossRefPubMedGoogle Scholar
  78. 78.
    Döri F, Húszár T, Nikolidakis D, Arweiler NB, Gera I, Sculean A. Effect of platelet-rich plasma on the healing of intra-bony defects treated with a natural bone mineral and a collagen membrane. J Clin Periodontol. 2007;34(3):254–61.CrossRefPubMedGoogle Scholar
  79. 79.
    Döri F, Húszár T, Nikolidakis D, Arweiler NB, Gera I, Sculean A. Effect of platelet-rich plasma on the healing of intrabony defects treated with an anorganic bovine bone mineral and expanded polytetrafluoroethylene membranes. J Periodontol. 2007;78(6):983–90.CrossRefPubMedGoogle Scholar
  80. 80.
    Yassibag-Berkman Z, Tuncer O, Subasioglu T, Kantarci A. Combined use of platelet-rich plasma and bone grafting with or without guided tissue regeneration in the treatment of anterior interproximal defects. J Periodontol. 2007;78(5):801–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Döri F, Nikolidakis D, Húszár T, Arweiler NB, Gera I, Sculean A. Effect of platelet-rich plasma on the healing of intrabony defects treated with an enamel matrix protein derivative and a natural bone mineral. J Clin Periodontol. 2008;35(1):44–50.PubMedGoogle Scholar
  82. 82.
    Dohan Ehrenfest DM, Andia I, Zumstein MA, Zhang C-Q, Pinto NR, Bielecki T. Classification of platelet concentrates (platelet-rich plasma-PRP, platelet-rich fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 2014;4(1):3–9.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Cortellini P, Tonetti MS, Lang NP, Suvan JE, Zucchelli G, Vangsted T, et al. The simplified papilla preservation flap in the regenerative treatment of deep intrabony defects: clinical outcomes and postoperative morbidity. J Periodontol. 2001;72(12):1702–12.CrossRefPubMedGoogle Scholar
  84. 84.
    Cortellini P, Tonetti MS. Evaluation of the effect of tooth vitality on regenerative outcomes in infrabony defects. J Clin Periodontol. 2001;28(7):672–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T. Fate of bone formed by guided tissue regeneration with or without grafting of bio-Oss or Biogran. An experimental study in the rat. J Clin Periodontol. 2004;31(1):30–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Stavropoulos A, Mardas N, Herrero F, Karring T. Smoking affects the outcome of guided tissue regeneration with bioresorbable membranes: a retrospective analysis of intrabony defects. J Clin Periodontol. 2004;31(11):945–50.CrossRefPubMedGoogle Scholar
  87. 87.
    Tonetti MS, Pini Prato G, Cortellini P. Periodontal regeneration of human intrabony defects. IV. Determinants of healing response. J Periodontol. 1993;64(10):934–40.CrossRefPubMedGoogle Scholar
  88. 88.
    Cortellini P, Tonetti MS. Minimally invasive surgical technique and enamel matrix derivative in intra-bony defects. I: clinical outcomes and morbidity. J Clin Periodontol. 2007;34(12):1082–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Periodontology, Faculty of OdontologyMalmö UniversityMalmöSweden
  2. 2.Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland

Personalised recommendations