Current Oral Health Reports

, Volume 4, Issue 1, pp 29–33 | Cite as

Advances and Challenges in Oral Biofilm Control

  • Beatriz Helena Dias Panariello
  • Cecilia Atem Gonçalves de Araújo Costa
  • Ana Cláudia Pavarina
  • Sérgio Lima Santiago
  • Simone DuarteEmail author
Microbiology (M Klein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microbiology


Purpose of Review

The paper aims to critically study the literature published over the past 3 years as relevant to oral biofilm control. The emphasis of this review is the interests and importance of new findings, seeking the following answers: (i) what is the major challenge in oral biofilm control?, (ii) what are the new anti-biofilm approaches?, and (iii) what are the further researches?

Recent Findings

In addition to mechanical plaque removal and the use of chemical agents against pathogenic biofilm, there is a need for development of new anti-biofilm approaches. The majority of the new studies aiming to control oral biofilm have been performed with the characterization of the extracellular matrix components. Exopolysaccharides (EPS), proteins, lipids, nucleic acids (eDNA), lipoteichoic acids (LTA), and lipopolysaccharides have been identified in the matrices of bacterial biofilms and are considered the current targets to oral biofilm control.


The extracellular matrix is essential for the existence of the biofilm and by its virulence both in bacterial and fungal pathogens. The better understanding of the biomechanical properties of the EPS matrix is the main advance and is leading to new chemical and/or biological approaches to remove or disorganize cariogenic biofilms. Recently, researches are focusing on the extracellular matrix for oral biofilm control with further clinical applicability.


Oral biofilms Oral microbiota Extracellular matrix Biofilm control Dental caries Oral fungi 



This work was supported by a São Paulo Research Foundation (FAPESP) scholarship 2016/00256-3 to B.H.D.P. and by the Coordination for the Improvement of Higher Education Personnel (CAPES) scholarship 6483-15-1 to C.A.G.A.C.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of major importance

  1. 1.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi: 10.1128/JB.00542-10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Willems HM, Xu Z, Peters BM. Polymicrobial biofilm studies: from basic science to biofilm control. Curr Oral Health Rep. 2016;3(1):36–44. doi: 10.1007/s40496-016-0078-y.CrossRefPubMedGoogle Scholar
  3. 3.
    Marsh PD, Devine DA. How is the development of dental biofilms influenced by the host? J Clin Periodontol. 2011;38(Suppl 11):28–35. doi: 10.1111/j.1600-051X.2010.01673.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Maddi A, Scannapieco FA. Oral biofilms, oral and periodontal infections, and systemic disease. Am J Dent. 2013;26(5):249–54.PubMedGoogle Scholar
  5. 5.
    Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A. The oral metagenome in health and disease. ISME J. 2012;6(1):46–56. doi: 10.1038/ismej.2011.85.CrossRefPubMedGoogle Scholar
  6. 6.
    Dupuy A, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One. 2014;9(3):e90899. doi: 10.1371/journal.pone.0090899.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6(1):e1000713. doi: 10.1371/journal.ppat.1000713.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE. Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates. Antimicrob Agents Chemother. 2010;54(8):3308–17. doi: 10.1128/AAC.00535-10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–47. doi: 10.1128/MMBR.00041-08.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nobile CJ, Mitchell AP. Microbial biofilms: e pluribus unum. Curr Biol. 2007;17(10):R349–53. doi: 10.1016/j.cub.2007.02.035.CrossRefPubMedGoogle Scholar
  11. 11.••
    Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5(4):e01333–14. doi: 10.1128/mBio.01333-14. This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix. It demonstrated the clinical relevance of matrix components, and it was showed that multiple matrix components are needed for protection from antifungal drugs CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.••
    Klein MI, Hwang G, Santos PH, Campanella OH, Koo H. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10. doi: 10.3389/fcimb.2015.00010. This manuscript shows that eDNA enhances EPS synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pleszczyńska M, Wiater A, Bachanek T, Szczodrak J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol Appl Biochem. 2016; doi: 10.1002/bab.1490.PubMedGoogle Scholar
  14. 14.
    Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86. doi: 10.1159/000324598.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol. 1998;43(2):103–10. doi: 10.1016/S0003-9969(97)00111-8.CrossRefPubMedGoogle Scholar
  16. 16.
    Gregoire S, Xiao J, Silva BB, Gonzalez I, Agidi PS, Klein MI, Ambatipudi KS, Rosalen PL, Bauserman R, Waugh RE, Koo H. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol. 2011;77(18):6357–67. doi: 10.1128/AEM.05203-11.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Koo H, Falsetta ML, Klein MI. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 2013;92(12):1065–73. doi: 10.1177/0022034513504218.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates 3rd JR, Heydorn A, Koo H. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 2012;8(4):e1002623. doi: 10.1371/journal.ppat.1002623.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33. doi: 10.1038/nrmicro2415.PubMedGoogle Scholar
  20. 20.
    Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia. 2010;169(5):323–31. doi: 10.1007/s11046-009-9264-y.CrossRefPubMedGoogle Scholar
  21. 21.
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295(5559):1487. doi: 10.1126/science.295.5559.1487.CrossRefPubMedGoogle Scholar
  22. 22.
    Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008;4(11):e1000213. doi: 10.1371/journal.ppat.1000213.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008;74(2):470–6. doi: 10.1128/AEM.02073-07.CrossRefPubMedGoogle Scholar
  24. 24.
    Berne C, Kysela DT, Brun YV. A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol. 2010;77(4):815–29. doi: 10.1111/j.1365-2958.2010.07267.x.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Okshevsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 2015;33:73–80. doi: 10.1016/j.copbio.2014.12.002.CrossRefPubMedGoogle Scholar
  26. 26.
    Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ. Burne RA3, Koo H, Brady LJ, Wen ZT. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol. 2014;196(13):2355–66. doi: 10.1128/JB.01493-14.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res. 2011;90(11):1271–8. doi: 10.1177/0022034511399096.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nadell CD, Drescher K, Wingreen NS, Bassler BL. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J. 2015;9(8):1700–9. doi: 10.1038/ismej.2014.246.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1 → 3)-α-D-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol. 2015;79:761–78. doi: 10.1016/j.ijbiomac.2015.05.052.CrossRefPubMedGoogle Scholar
  30. 30.
    Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect. 2015;17(7):531–7. doi: 10.1016/j.micinf.2015.03.015.CrossRefPubMedGoogle Scholar
  31. 31.•
    Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J, Engel E, Mateos-Timoneda MA, Torrents E. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–8. doi: 10.1016/j.jconrel.2015.04.028. This study showed that repeated administration of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to target and disassemble Pseudomonas aeruginosa biofilm by degrading the extracellular DNA that stabilize the biofilm matrix CrossRefPubMedGoogle Scholar
  32. 32.
    Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 2016;11(5):e0155427. doi: 10.1371/journal.pone.0155427.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Sousa DL, Lima RA, Zanin IC, Klein MI, Janal MN, Duarte S. Effect of twice-daily blue light treatment on matrix-rich biofilm development. PLoS One. 2015;10(7):e0131941. doi: 10.1371/journal.pone.0131941.CrossRefPubMedGoogle Scholar
  34. 34.
    Horev B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano. 2015;9(3):2390–404. doi: 10.1021/nn507170s.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Beatriz Helena Dias Panariello
    • 1
  • Cecilia Atem Gonçalves de Araújo Costa
    • 2
  • Ana Cláudia Pavarina
    • 1
  • Sérgio Lima Santiago
    • 2
  • Simone Duarte
    • 1
    Email author
  1. 1.Department of Dental Materials and ProsthodonticsSão Paulo State University (UNESP), Araraquara Dental SchoolRua Humaitá, 1680, 14801-903, Araraquara, São PauloBrazil
  2. 2.Department of Restorative DentistryFaculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, CearáBrazil

Personalised recommendations