Advertisement

Current Oral Health Reports

, Volume 3, Issue 3, pp 282–292 | Cite as

RETRACTED ARTICLE: Biological Mechanisms Relating Periodontitis and Diabetes

  • Hatice HasturkEmail author
  • Alpdogan Kantarci
Systemic Diseases (M Bartold, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Systemic Diseases

Abstract

Diabetes mellitus is associated with a number of complications resulting from hyperglycemia. Periodontitis is among the major complications associated with diabetes and reciprocally affects the severity and control of diabetes. Increase inflammation induced by type 2 diabetes directly contributes to the increased prevalence and severity of periodontitis in these patients. Regardless of the amount of dental plaque accumulation, gingivitis is more prevalent in diabetic patients than in healthy controls suggesting an impact of diabetes on periodontal inflammatory response to the bacterial biofilm. Levels of proinflammatory cytokines in the periodontal tissue or gingival crevicular fluid are elevated in patients with poorly controlled diabetes in the absence of periodontal disease when compared to well-controlled and non-diabetic patients. This review focuses on the possible pathological mechanisms underlying the association between periodontal disease and type 2 diabetes, explores new avenues in understanding the inflammatory pathways, and discusses novel therapeutic approaches with a paradigm shift in the prevention and treatment of diabetes and periodontitis.

Keywords

Periodontal disease Diabetes Innate immunity Neutrophil Inflammation Resolution of Inflammation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Hatice Hasturk and Alpdogan Kantarci declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Eke PI et al. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Libby P. Atherosclerosis: the new view. Sci Am. 2002;286(5):46–55.PubMedCrossRefGoogle Scholar
  4. 4.
    Dandona P et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111(11):1448–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Champion OL et al. A murine intraperitoneal infection model reveals that host resistance to Campylobacter jejuni is Nramp1 dependent. Microbes Infect. 2008;10(8):922–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Hasturk H et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol. 2007;179(10):7021–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Braun J, Wei B. Body traffic: ecology, genetics, and immunity in inflammatory bowel disease. Annu Rev Pathol. 2007;2:401–29.PubMedCrossRefGoogle Scholar
  8. 8.
    Andoh A et al. Recent advances in molecular approaches to gut microbiota in inflammatory bowel disease. Curr Pharm Des. 2009;15(18):2066–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Shih DQ, Targan SR, McGovern D. Recent advances in IBD pathogenesis: genetics and immunobiology. Curr Gastroenterol Rep. 2008;10(6):568–75.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Iacopino AM. Periodontitis and diabetes interrelationships: role of inflammation. Ann Periodontol. 2001;6(1):125–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Borgnakke WS, Chapple IL, Genco RJ, Armitage GC, Bartold PM, D’Aiuto F, et al. The randomized controlled trial (RCT) published by the Journal of the American Medical Association (JAMA) on the impact of periodontal therapy on glycated hemoglobin (HbA1c) has fundamental problems. J Evid Based Dent Pract. 2014;14(3):127–32.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Engebretson SP et al. The effect of nonsurgical periodontal therapy on hemoglobin A1c levels in persons with type 2 diabetes and chronic periodontitis: a randomized clinical trial. JAMA. 2013;310(23):2523–32.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tuttle HA et al. Platelet-neutrophil conjugate formation is increased in diabetic women with cardiovascular disease. Cardiovasc Diabetol. 2003;2:12.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fredman G et al. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS One. 2011;6(9):e24422.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Gilroy DW et al. Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov. 2004;3(5):401–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010;177(4):1576–91.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Serhan CN et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000;192(8):1197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hasturk H et al. RvE1 protects from local inflammation and osteoclast- mediated bone destruction in periodontitis. FASEB J. 2006;20(2):401–3.PubMedGoogle Scholar
  19. 19.
    Khanna S et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010;5(3):e9539.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Loe H. Periodontal disease. The sixth complication of diabetes mellitus. Diabetes Care. 1993;16(1):329–34.PubMedCrossRefGoogle Scholar
  21. 21.
    Joslin EP, Kahn CR. Joslin’s diabetes mellitus. 14th ed. Philadelphia: Lippincott Williams & Willkins; 2005.Google Scholar
  22. 22.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71.Google Scholar
  23. 23.
    International Expert, C. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32(7):1327–34.CrossRefGoogle Scholar
  24. 24.
    Patel P, Macerollo A. Diabetes mellitus: diagnosis and screening. Am Fam Physician. 2010;81(7):863–70.PubMedGoogle Scholar
  25. 25.
    Kuzuya T et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract. 2002;55(1):65–85.PubMedCrossRefGoogle Scholar
  26. 26.
    The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.Google Scholar
  27. 27.
    Pocai A et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434(7036):1026–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Mealey B. Diabetes and periodontal diseases. J Periodontol. 1999;70(8):935–49.PubMedCrossRefGoogle Scholar
  29. 29.
    Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288(20):2579–88.PubMedCrossRefGoogle Scholar
  30. 30.
    Klein R, Klein BE, Moss SE. The Wisconsin epidemiological study of diabetic retinopathy: a review. Diabetes Metab Rev. 1989;5(7):559–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Feman SS. Diabetes- and thyroid-related eye disease. Curr Opin Ophthalmol. 1996;7(6):67–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Dyck PJ et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology. 1993;43(4):817–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Rosolova H et al. Macrovascular and microvascular complications in type 2 diabetes patients. Vnitr Lek. 2008;54(3):229–37.PubMedGoogle Scholar
  34. 34.
    Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yorek MA. The potential role of angiotensin converting enzyme and vasopeptidase inhibitors in the treatment of diabetic neuropathy. Curr Drug Targets. 2008;9(1):77–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Thangarajah H et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009;106(32):13505–10.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Roy S et al. New insights into hyperglycemia-induced molecular changes in microvascular cells. J Dent Res. 2010;89(2):116–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Veloso CA et al. TLR4 and RAGE: similar routes leading to inflammation in type 2 diabetic patients. Diabete Metab. 2011;37(4):336–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Rios-Navarro C et al. Differential effects of anti-TNF-alpha and anti-IL-12/23 agents on human leukocyte-endothelial cell interactions. Eur J Pharmacol. 2015;765:355–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Blatnik M, Thorpe SR, Baynes JW. Succination of proteins by fumarate: mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in diabetes. Ann N Y Acad Sci. 2008;1126:272–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes. 2009;58(1):227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nishikawa T et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Lowe GD. The relationship between infection, inflammation, and cardiovascular disease: an overview. Ann Periodontol. 2001;6(1):1–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Lalla E et al. Diabetes mellitus promotes periodontal destruction in children. J Clin Periodontol. 2007;34(4):294–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Mattout C, Bourgeois D, Bouchard P. Type 2 diabetes and periodontal indicators: epidemiology in France 2002-2003. J Periodontal Res. 2006;41(4):253–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Lu HK, Yang PC. Cross-sectional analysis of different variables of patients with non-insulin dependent diabetes and their periodontal status. Int J Periodontics Restorative Dent. 2004;24(1):71–9.PubMedGoogle Scholar
  48. 48.
    Sandberg GE et al. Type 2 diabetes and oral health: a comparison between diabetic and non-diabetic subjects. Diabetes Res Clin Pract. 2000;50(1):27–34.PubMedCrossRefGoogle Scholar
  49. 49.
    Novak KF et al. Periodontitis and gestational diabetes mellitus: exploring the link in NHANES III. J Public Health Dent. 2006;66(3):163–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Firatli E. The relationship between clinical periodontal status and insulin-dependent diabetes mellitus. Results after 5 years. J Periodontol. 1997;68(2):136–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Taylor GW. Bidirectional interrelationships between diabetes and periodontal diseases: an epidemiologic perspective. Ann Periodontol. 2001;6(1):99–112.PubMedCrossRefGoogle Scholar
  52. 52.
    Mealey BL, Ocampo GL. Diabetes mellitus and periodontal disease. Periodontol 2000. 2007;44:127–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Taylor GW, Borgnakke WS. Periodontal disease: associations with diabetes, glycemic control and complications. Oral Dis. 2008;14(3):191–203.PubMedCrossRefGoogle Scholar
  54. 54.
    Demmer RT et al. Periodontal status and A1C change: longitudinal results from the study of health in Pomerania (SHIP). Diabetes Care. 2010;33(5):1037–43.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bridges RB et al. Periodontal status of diabetic and non-diabetic men: effects of smoking, glycemic control, and socioeconomic factors. J Periodontol. 1996;67(11):1185–92.PubMedCrossRefGoogle Scholar
  56. 56.
    Moore PA et al. Type 1 diabetes mellitus and oral health: assessment of tooth loss and edentulism. J Public Health Dent. 1998;58(2):135–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Lim LP et al. Relationship between markers of metabolic control and inflammation on severity of periodontal disease in patients with diabetes mellitus. J Clin Periodontol. 2007;34(2):118–23.PubMedCrossRefGoogle Scholar
  59. 59.
    Taylor GW et al. Severe periodontitis and risk for poor glycemic control in patients with non-insulin-dependent diabetes mellitus. J Periodontol. 1996;67(10 Suppl):1085–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Williams RC. Periodontal disease. N Engl J Med. 1990;322(6):373–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Genco RJ. Host responses in periodontal diseases: current concepts. J Periodontol. 1992;63(4 Suppl):338–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Listgarten MA. Pathogenesis of periodontitis. J Clin Periodontol. 1986;13(5):418–30.PubMedCrossRefGoogle Scholar
  63. 63.
    Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4(1):1–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Califano JV, Research, Science and Therapy Committee American Academy of Periodontology. Position paper: periodontal diseases of children and adolescents. J Periodontol. 2003;74(11):1696–704.PubMedCrossRefGoogle Scholar
  65. 65.
    Kantarci A, Van Dyke TE. Resolution of inflammation in periodontitis. J Periodontol. 2005;76(11 Suppl):2168–74.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Van Dyke TE. Cellular and molecular susceptibility determinants for periodontitis. Periodontol 2000. 2007;45:10–3.PubMedCrossRefGoogle Scholar
  67. 67.
    Kobayashi-Sakamoto M, Isogai E, Hirose K. Porphyromonas gingivalis modulates the production of interleukin 8 and monocyte chemotactic protein 1 in human vascular endothelial cells. Curr Microbiol. 2003;46(2):109–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Hanazawa S et al. Expression of monocyte chemoattractant protein 1 (MCP-1) in adult periodontal disease: increased monocyte chemotactic activity in crevicular fluids and induction of MCP-1 expression in gingival tissues. Infect Immun. 1993;61(12):5219–24.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Jiang Y et al. Monocyte chemoattractant protein 1 and interleukin-8 production in mononuclear cells stimulated by oral microorganisms. Infect Immun. 1996;64(11):4450–5.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol. 2009;11(5):521–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Diacovich L, Gorvel JP. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol. 2010;8(2):117–28.PubMedCrossRefGoogle Scholar
  72. 72.
    Van Dyke TE. The etiology and pathogenesis of periodontitis revisited. J Appl Oral Sci. 2009;17(1):1678–7757.Google Scholar
  73. 73.
    Finlay BB, Medzhitov R. Host-microbe interactions: fulfilling a niche. Cell Host Microbe. 2007;1(1):3–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Cutler CW et al. Heightened gingival inflammation and attachment loss in type 2 diabetics with hyperlipidemia. J Periodontol. 1999;70(11):1313–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Andriankaja OM et al. Levels of serum interleukin (IL)-6 and gingival crevicular fluid of IL-1beta and prostaglandin E(2) among non-smoking subjects with gingivitis and type 2 diabetes. J Periodontol. 2009;80(2):307–16.PubMedCrossRefGoogle Scholar
  76. 76.
    Struch F et al. Interleukin-1 gene polymorphism, diabetes, and periodontitis: results from the Study of Health in Pomerania (SHIP). J Periodontol. 2008;79(3):501–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Lopez NJ, Valenzuela CY, Jara L. Interleukin-1 gene cluster polymorphisms associated with periodontal disease in type 2 diabetes. J Periodontol. 2009;80(10):1590–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Guzman S et al. Association between interleukin-1 genotype and periodontal disease in a diabetic population. J Periodontol. 2003;74(8):1183–90.PubMedCrossRefGoogle Scholar
  79. 79.
    Salvi GE et al. Pro-inflammatory biomarkers during experimental gingivitis in patients with type 1 diabetes mellitus: a proof-of-concept study. J Clin Periodontol. 2010;37(1):9–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Friedewald VE et al. The American Journal of Cardiology and Journal of Periodontology Editors’ Consensus: periodontitis and atherosclerotic cardiovascular disease. Am J Cardiol. 2009;104(1):59–68.PubMedCrossRefGoogle Scholar
  81. 81.
    Nishimura F et al. Periodontal disease and diabetes mellitus: the role of tumor necrosis factor-alpha in a 2-way relationship. J Periodontol. 2003;74(1):97–102.PubMedCrossRefGoogle Scholar
  82. 82.
    Iwamoto Y et al. The effect of antimicrobial periodontal treatment on circulating tumor necrosis factor-alpha and glycated hemoglobin level in patients with type 2 diabetes. J Periodontol. 2001;72(6):774–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Grossi P, Baldanti F. Treatment of ganciclovir-resistant human cytomegalovirus infection. J Nephrol. 1997;10(3):146–51.PubMedGoogle Scholar
  84. 84.
    Tsai C, Hayes C, Taylor GW. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol. 2002;30(3):182–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Taylor GW et al. Non-insulin dependent diabetes mellitus and alveolar bone loss progression over 2 years. J Periodontol. 1998;69(1):76–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Tervonen T, Karjalainen K. Periodontal disease related to diabetic status. A pilot study of the response to periodontal therapy in type 1 diabetes. J Clin Periodontol. 1997;24(7):505–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Tobias P, Curtiss LK. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res. 2005;46(3):404–11.PubMedCrossRefGoogle Scholar
  88. 88.
    van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 2008;11(1):91–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Hildebrand D et al. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling. Cell Commun Signal. 2012;10(1):22.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Harris NL, Ronchese F. The role of B7 costimulation in T-cell immunity. Immunol Cell Biol. 1999;77(4):304–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Metcalf D. Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science. 1991;254(5031):529–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Wheeler JG et al. Neutrophil storage pool depletion in septic, neutropenic neonates. Pediatr Infect Dis. 1984;3(5):407–9.PubMedCrossRefGoogle Scholar
  94. 94.
    McDonald JU et al. In vivo functional analysis and genetic modification of in vitro-derived mouse neutrophils. FASEB J. 2011;25(6):1972–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Lloyds D, Brindle NP, Hallett MB. Priming of human neutrophils by tumour necrosis factor-alpha and substance P is associated with tyrosine phosphorylation. Immunology. 1995;84(2):220–6.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Patel AK, Hallett MB, Campbell AK. Threshold responses in production of reactive oxygen metabolites in individual neutrophils detected by flow cytometry and microfluorimetry. Biochem J. 1987;248(1):173–80.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hallett MB, Campbell AK. Is intracellular Ca2+ the trigger for oxygen radical production by polymorphonuclear leucocytes? Cell Calcium. 1984;5(1):1–19.PubMedCrossRefGoogle Scholar
  98. 98.
    Abramson, J.S. and J.G. Wheeler, The Neutrophil. The Natural immune system. Oxford; New York: IRL Press at Oxford University Press; 1993.Google Scholar
  99. 99.
    Hallett MB. The neutrophil: cellular biochemistry and physiology. Boca Raton: CRC Press; 1989. p. 266.Google Scholar
  100. 100.
    Van Dyke, T.E. and J. Vaikuntam, Neutrophil function and dysfunction in periodontal disease. Curr Opin Periodontol, 1994;2:19–27.Google Scholar
  101. 101.
    Moreno-Navarrete JM, Fernandez-Real JM. Antimicrobial-sensing proteins in obesity and type 2 diabetes: the buffering efficiency hypothesis. Diabetes Care. 2011;34 Suppl 2:S335–41.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Babior BM. Phagocytes and oxidative stress. Am J Med. 2000;109(1):33–44.PubMedCrossRefGoogle Scholar
  103. 103.
    Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol. 1999;26(3-4):259–65.PubMedCrossRefGoogle Scholar
  104. 104.
    Tater D et al. Polymorphonuclear cell derangements in type I diabetes. Horm Metab Res. 1987;19(12):642–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Delamaire M et al. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29–34.PubMedCrossRefGoogle Scholar
  106. 106.
    Van Dyke TE et al. Neutrophil chemotaxis dysfunction in human periodontitis. Infect Immun. 1980;27(1):124–32.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Andersen B, Goldsmith GH, Spagnuolo PJ. Neutrophil adhesive dysfunction in diabetes mellitus; the role of cellular and plasma factors. J Lab Clin Med. 1988;111(3):275–85.PubMedGoogle Scholar
  108. 108.
    Bagdade JD, Walters E. Impaired granulocyte adherence in mildly diabetic patients: effects of tolazamide treatment. Diabetes. 1980;29(4):309–11.PubMedCrossRefGoogle Scholar
  109. 109.
    Bagdade JD, Stewart M, Walters E. Impaired granulocyte adherence. A reversible defect in host defense in patients with poorly controlled diabetes. Diabetes. 1978;27(6):677–81.PubMedCrossRefGoogle Scholar
  110. 110.
    Hurttia H, Saarinen K, Leino L. Increased adhesion of peripheral blood neutrophils from patients with localized juvenile periodontitis. J Periodontal Res. 1998;33(5):292–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Marhoffer W et al. Reduced phagocytic capacity of circulating granulocytes in diabetes mellitus. Immun Infekt. 1992;20(1):10–2.PubMedGoogle Scholar
  112. 112.
    Gin H, Brottier E, Aubertin J. Influence of glycaemic normalisation by an artificial pancreas on phagocytic and bactericidal functions of granulocytes in insulin dependent diabetic patients. J Clin Pathol. 1984;37(9):1029–31.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Shapira L et al. Superoxide formation and chemiluminescence of peripheral polymorphonuclear leukocytes in rapidly progressive periodontitis patients. J Clin Periodontol. 1991;18(1):44–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Van Dyke TE et al. Neutrophil function in localized juvenile periodontitis. Phagocytosis, superoxide production and specific granule release. J Periodontol. 1986;57(11):703–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Kantarci A, Oyaizu K, Van Dyke TE. Neutrophil-mediated tissue injury in periodontal disease pathogenesis: findings from localized aggressive periodontitis. J Periodontol. 2003;74(1):66–75.PubMedCrossRefGoogle Scholar
  116. 116.
    Nielson CP, Hindson DA. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes. 1989;38(8):1031–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Ortmeyer J, Mohsenin V. Glucose suppresses superoxide generation in normal neutrophils: interference in phospholipase D activation. Am J Physiol. 1993;264(2 Pt 1):C402–10.PubMedGoogle Scholar
  118. 118.
    Ortmeyer J, Mohsenin V. Inhibition of phospholipase D and superoxide generation by glucose in diabetic neutrophils. Life Sci. 1996;59(3):255–62.PubMedCrossRefGoogle Scholar
  119. 119.
    Kawamura T et al. Effects of glucose and SNK-860, an aldose reductase inhibitor, on the polyol pathway and chemiluminescence response of human neutrophils in vitro. Diabet Med. 1995;12(5):392–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Lin X, Candlish JK, Thai AC. Superoxide production by neutrophils from diabetics and normal subjects in response to glucose and galactose. Exp Mol Pathol. 1993;58(3):229–36.PubMedCrossRefGoogle Scholar
  121. 121.
    Shah SV, Wallin JD, Eilen SD. Chemiluminescence and superoxide anion production by leukocytes from diabetic patients. J Clin Endocrinol Metab. 1983;57(2):402–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Aleksandrovskii YA. Antithrombin III, C1 inhibitor, methylglyoxal, and polymorphonuclear leukocytes in the development of vascular complications in diabetes mellitus. Thromb Res. 1992;67(2):179–89.PubMedCrossRefGoogle Scholar
  123. 123.
    Wierusz-Wysocka B et al. Evidence of polymorphonuclear neutrophils (PMN) activation in patients with insulin-dependent diabetes mellitus. J Leukoc Biol. 1987;42(5):519–23.PubMedGoogle Scholar
  124. 124.
    Markert M, Cech P, Frei J. Oxygen metabolism of phagocytosing human polymorphonuclear leucocytes in diabetes mellitus. Blut. 1984;49(6):447–55.PubMedCrossRefGoogle Scholar
  125. 125.
    Ines Baranao R et al. Evaluation of neutrophil activity and circulating immune complexes levels in diabetic patients. Horm Metab Res. 1987;19(8):371–4.PubMedCrossRefGoogle Scholar
  126. 126.
    Tebbs SE et al. The influence of aldose reductase on the oxidative burst in diabetic neutrophils. Diabetes Res Clin Pract. 1992;15(2):121–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Sato N et al. Hypertonic glucose inhibits the production of oxygen-derived free radicals by rat neutrophils. Life Sci. 1993;52(18):1481–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Ding Y et al. Phosphorylation of pleckstrin increases proinflammatory cytokine secretion by mononuclear phagocytes in diabetes mellitus. J Immunol. 2007;179(1):647–54.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ayilavarapu S et al. Diabetes-induced oxidative stress is mediated by Ca2 + -independent phospholipase A2 in neutrophils. J Immunol. 2010;184(3):1507–15.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ding Y et al. Activation of RAGE induces elevated O2- generation by mononuclear phagocytes in diabetes. J Leukoc Biol. 2007;81(2):520–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol. 2008;153 Suppl 1:S200–15.PubMedGoogle Scholar
  132. 132.
    Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol. 2013;13(4):632–40.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Norling LV, Perretti M. The role of omega-3 derived resolvins in arthritis. Curr Opin Pharmacol. 2013;13(3):476–81.PubMedCrossRefGoogle Scholar
  134. 134.
    Levy BD, Serhan CN. Resolution of acute inflammation in the lung. Annu Rev Physiol. 2014;76:467–92.PubMedCrossRefGoogle Scholar
  135. 135.
    Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2014;19(1):21–36.PubMedCrossRefGoogle Scholar
  136. 136.
    Arita M et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci U S A. 2005;102(21):7671–6.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Serhan CN et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sun YP et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem. 2007;282(13):9323–34.PubMedCrossRefGoogle Scholar
  139. 139.
    Levy BD et al. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001;2(7):612–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Aoki H et al. Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem Biophys Res Commun. 2008;367(2):509–15.PubMedCrossRefGoogle Scholar
  141. 141.
    Schottelius AJ et al. An aspirin-triggered lipoxin A4 stable analog displays a unique topical anti-inflammatory profile. J Immunol. 2002;169(12):7063–70.PubMedCrossRefGoogle Scholar
  142. 142.
    Wu SH et al. Efficacy and safety of 15(R/S)-methyl-lipoxin A(4) in topical treatment of infantile eczema. Br J Dermatol. 2013;168(1):172–8.PubMedCrossRefGoogle Scholar
  143. 143.
    Connor KM et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 2007;13(7):868–73.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Mukherjee PK et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A. 2004;101(22):8491–6.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Gonzalez-Periz A et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946–57.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Herrera BS et al. Impact of resolvin E1 on murine neutrophil phagocytosis in type 2 diabetes. Infect Immun. 2015;83(2):792–801.PubMedCrossRefGoogle Scholar
  147. 147.
    Recchiuti A et al. Immunoresolving actions of oral resolvin D1 include selective regulation of the transcription machinery in resolution-phase mouse macrophages. FASEB J. 2014;28(7):3090–102.PubMedCrossRefGoogle Scholar
  148. 148.
    Aliberti J et al. Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol. 2002;3(1):76–82.PubMedCrossRefGoogle Scholar
  149. 149.
    Schwab JM et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature. 2007;447(7146):869–74.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Serhan CN. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol. 2007;25:101–37.PubMedCrossRefGoogle Scholar
  151. 151.
    Bannenberg G et al. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration. Br J Pharmacol. 2004;143(1):43–52.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Mitchell S et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol. 2002;13(10):2497–507.PubMedCrossRefGoogle Scholar
  153. 153.
    Arita M et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med. 2005;201(5):713–22.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Arita M et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178(6):3912–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Ohira T et al. Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J Biol Chem. 2010;285(5):3451–61.PubMedCrossRefGoogle Scholar
  156. 156.
    Hasturk H et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler Thromb Vasc Biol. 2015;35(5):1123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Periodontol. 2013;84(4 Suppl):S51–69.PubMedGoogle Scholar
  158. 158.
    Merched AJ et al. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 2008;22(10):3595–606.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Van Dyke TE, Serhan CN. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J Dent Res. 2003;82(2):82–90.PubMedCrossRefGoogle Scholar
  160. 160.
    Mickelson JK et al. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? J Am Coll Cardiol. 1996;28(2):345–53.PubMedCrossRefGoogle Scholar
  161. 161.
    Michelson AD et al. Evidence that pre-existent variability in platelet response to ADP accounts for ‘clopidogrel resistance’. J Thromb Haemost. 2007;5(1):75–81.PubMedCrossRefGoogle Scholar
  162. 162.
    Furman MI et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol. 2001;38(4):1002–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Patko Z et al. Elevation of monocyte-platelet aggregates is an early marker of type 2 diabetes. Interv Med Appl Sci. 2012;4(4):181–5.PubMedPubMedCentralGoogle Scholar
  164. 164.
    de Gaetano G, Cerletti C, Evangelista V. Recent advances in platelet-polymorphonuclear leukocyte interaction. Haemostasis. 1999;29(1):41–9.PubMedGoogle Scholar
  165. 165.
    Fiore S, Serhan CN. Lipoxin A4 receptor activation is distinct from that of the formyl peptide receptor in myeloid cells: inhibition of CD11/18 expression by lipoxin A4-lipoxin A4 receptor interaction. Biochemistry. 1995;34(51):16678–86.PubMedCrossRefGoogle Scholar
  166. 166.
    Filep JG et al. Anti-inflammatory actions of lipoxin A(4) stable analogs are demonstrable in human whole blood: modulation of leukocyte adhesion molecules and inhibition of neutrophil-endothelial interactions. Blood. 1999;94(12):4132–42.PubMedGoogle Scholar
  167. 167.
    Dona M et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood. 2008;112(3):848–55.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Oh SF et al. Resolvin E2 formation and impact in inflammation resolution. J Immunol. 2012;188(9):4527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Fredman G, Van Dyke TE, Serhan CN. Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler Thromb Vasc Biol. 2010;30(10):2005–13.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Borgeson E et al. Lipoxin A(4) inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression. Infect Immun. 2011;79(4):1489–97.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Schmidt AM et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108(7):949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Fiorentino TV et al. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19(32):5695–703.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Forsyth InstituteCambridgeUSA

Personalised recommendations