Current Oral Health Reports

, Volume 3, Issue 3, pp 221–228 | Cite as

A Critical Evaluation of Fatigue Studies for Restorative Materials in Dentistry

  • Martin RosentrittEmail author
  • Michael Behr
  • Verena Preis
Dental Restorative Materials (M Özcan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dental Restorative Materials


Fatigue tests are state of the art in dental materials testing for estimating the lifetime performance of materials or restorations. A number of different loading situations are tested with varying parameters, which are based on statistical methods or clinical experience. Partly, inadequate information is provided for a sufficient description and evaluation of the applied methods and resulting data. Several in vitro studies with limited clinical relevance have been published. This review gives a critical overview of fatigue methods published in dental literature. A clear differentiation should be made between fatigue tests for fundamental materials research and component testing of dental restorations. For structural testing, a correlation between in vitro data and in vitro performance is required. Correlation should be based on detailed evaluation of the clinical situation.


Dental materials Wöhler curve ISO DIN 50100 Kaplan-Meier Weibull SSALT TCML Chewing simulation 


Compliance with Ethical Standards

Conflict of Interest

Martin Rosentritt, Michael Behr, and Verena Preis report conducting third-party research for dental manufacturers during the conduct of study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance,•• Of major importance

  1. 1.
    Beuth J. Load controlled fatigue testing—execution and evaluation of cyclic tests at constant load amplitudes on metallic specimens and components. Berlin: Beuth Verlag; 2015.Google Scholar
  2. 2.••
    Roesler J, Harders H, Baeker M. Mechanical behaviour of engineering materials: metals, ceramics, polymers. Berlin: Springer-Verlag; 2007. Proving important basic knowledge on the topic.Google Scholar
  3. 3.
    Pubmed. Available from: URL:
  4. 4.
    Aboushelib MN. Fatigue and fracture resistance of zirconia crowns prepared with different finish line designs. J Prosthodont. 2012;21(1):22–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Amir Rad FA, Succaria FG, Morgano SM. Fracture resistance of porcelain veneered zirconia crowns with exposed lingual zirconia for anterior teeth after thermal cycling: an in vitro study. Saudi Dent J. 2015;27(2):63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Silva NRFA, Bonfante E, Rafferty BT, Zavanelli RA, Martins LL, Rekow ED, et al. Conventional and modified veneered zirconia vs. metalloceramic: fatigue and finite element analysis. J Prosthodont. 2012;21(6):433–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Alqahtani F, Flinton R. Postfatigue fracture resistance of modified prefabricated zirconia implant abutments. J Prosthet Dent. 2014;112(2):299–305.CrossRefPubMedGoogle Scholar
  8. 8.
    Eroğlu Z, Gurbulak AG. Fatigue behavior of zirconia-ceramic, galvano-ceramic, and porcelain-fused-to-metal fixed partial dentures. J Prosthodont. 2013;22(7):516–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Ghazy MH, Madina MM, Aboushelib MN. Influence of fabrication techniques and artificial aging on the fracture resistance of different cantilever zirconia fixed dental prostheses. J Adhes Dent. 2012;14(2):161–6.PubMedGoogle Scholar
  10. 10.
    Jiang T, Chen C, Lv P. Selective infiltrated etching to surface treat zirconia using a modified glass agent. J Adhes Dent. 2014;16(6):553–7.PubMedGoogle Scholar
  11. 11.
    Perdigão J, Pinto AM, Monteiro RCC, Braz Fernandes FM, Laranjeira P, Veiga JP. Degradation of dental ZrO2-based materials after hydrothermal fatigue. Part I: XRD, XRF, and FESEM analyses. Dent Mater J. 2012;31(2):256–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent. 2012;40(2):154–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Seto KB, McLaren EA, Caputo AA, White SN. Fatigue behavior of the resinous cement to zirconia bond. J Prosthodont. 2013;22(7):523–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Ayatollahi MR, Yahya MY, Karimzadeh A, Nikkhooyifar M, Ayob A. Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites. Mater Sci Eng C Mater Biol Appl. 2015;54:69–75.CrossRefPubMedGoogle Scholar
  15. 15.
    Bortolotto T, Bahillo J, Richoz O, Hafezi F, Krejci I. Failure analysis of adhesive restorations with SEM and OCT: from marginal gaps to restoration loss. Clin Oral Investig. 2015;19(8):1881–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Hamano N, Chiang Y, Nyamaa I, Yamaguchi H, Ino S, Hickel R, et al. Repair of silorane-based dental composites: influence of surface treatments. Dent Mater. 2012;28(8):894–902.CrossRefPubMedGoogle Scholar
  17. 17.
    Hurley RK, Drummond JL, Viana GC, Galang MT. The effects of environment and cyclic fatigue on the mechanical properties of an indirect composite. J Dent. 2012;40(10):787–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Kassem AS, Atta O, El-Mowafy O. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns. J Prosthodont. 2012;21(1):28–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Scotti N, Rota R, Scansetti M, Paolino DS, Chiandussi G, Pasqualini D, et al. Influence of adhesive techniques on fracture resistance of endodontically treated premolars with various residual wall thicknesses. J Prosthet Dent. 2013;110(5):376–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Shibata S, Gondo R, Araújo É, Mello Roesler, Carlos Rodrigo de, Baratieri LN. Influence of surrounding wall thickness on the fatigue resistance of molars restored with ceramic inlay. Braz Oral Res. 2014; 28.Google Scholar
  21. 21.
    Slavcheva S, Krejci I, Bortolotto T. Luting of ceramic crowns with a self-adhesive cement: effect of contamination on marginal adaptation and fracture strength. Med Oral Patol Oral Cir Bucal. 2013;18(5):e799–803.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alhasanyah A, Vaidyanathan TK, Flinton RJ. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns. J Prosthodont. 2013;22(5):383–90.CrossRefPubMedGoogle Scholar
  23. 23.
    Amaral M, Cesar PF, Bottino MA, Lohbauer U, Valandro LF. Fatigue behavior of Y-TZP ceramic after surface treatments. J Mech Behav Biomed Mater. 2015;57:149–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Belli R, Petschelt A, Lohbauer U. Thermal-induced residual stresses affect the fractographic patterns of zirconia-veneer dental prostheses. J Mech Behav Biomed Mater. 2013;21:167–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Canullo L, Coelho PG, Bonfante EA. Mechanical testing of thin-walled zirconia abutments. J Appl Oral Sci: Rev FOB. 2013;21(1):20–4.CrossRefGoogle Scholar
  26. 26.
    Corazza PH, Feitosa SA, Borges ALS, Della Bona A. Influence of convergence angle of tooth preparation on the fracture resistance of Y-TZP-based all-ceramic restorations. Dent Mater. 2013;29(3):339–47.CrossRefPubMedGoogle Scholar
  27. 27.
    Foong JKW, Judge RB, Palamara JE, Swain MV. Fracture resistance of titanium and zirconia abutments: an in vitro study. J Prosthet Dent. 2013;109(5):304–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Fraga S, Pereira GKR, Freitas M, Kleverlaan CJ, Valandro LF, May LG. Loading frequencies up to 20Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic. J Mech Behav Biomed Mater. 2016;61:79–86.CrossRefPubMedGoogle Scholar
  29. 29.
    Guess PC, Bonfante EA, Silva, Nelson RFA, Coelho PG, van Thompson P. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater. 2013;29(3):307–16.CrossRefPubMedGoogle Scholar
  30. 30.••
    Rosentritt M, Behr M, Gebhard R, Handel G. Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures. Dent Mater. 2006;22(2):176–82. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  31. 31.
    Behr M, Hindelang U, Rosentritt M, Lang R, Handel G. Comparison of failure rates of adhesive-fixed partial dentures for in vivo and in vitro studies. Clin Oral Investig. 2000;4(1):25–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Harding AB, Norling BK, Teixeira EC. The effect of surface treatment of the interfacial surface on fatigue-related microtensile bond strength of milled zirconia to veneering porcelain. J Prosthodont. 2012;21(5):346–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Iijima T, Homma S, Sekine H, Sasaki H, Yajima Y, Yoshinari M. Influence of surface treatment of yttria-stabilized tetragonal zirconia polycrystal with hot isostatic pressing on cyclic fatigue strength. Dent Mater J. 2013;32(2):274–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiménez-Melendo M, Llena-Blasco O, Bruguera A, Llena-Blasco J, Yáñez-Vico R, García-Calderón M, et al. Mechanical behavior of single-layer ceramized zirconia abutments for dental implant prosthetic rehabilitation. J Clin Exp Dent. 2014;6(5):e485–90.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mitsias ME, van Thompson P, Pines M, Silva, Nelson RFA. Reliability and failure modes of two Y-TZP abutment designs. Int J Prosthodont. 2015;28(1):75–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Nicolaisen MH, Bahrami G, Finlay S, Isidor F. Comparison of fatigue resistance and failure modes between metal-ceramic and all-ceramic crowns by cyclic loading in water. J Dent. 2014;42(12):1613–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Noqueira LB, Moura CD, Francischone CE, Valente VS, Alencar SM, Moura WL, et al. Fracture strength of implant-supported ceramic crowns with customized zirconia abutments: screw retained vs. cement retained. J Prosthodont. 2016;25(1):49–53.Google Scholar
  38. 38.
    Nossair SA, Aboushelib MN, Morsi TS. Fracture and fatigue resistance of cemented versus fused CAD-on veneers over customized zirconia implant abutments. J Prosthodont. 2015.Google Scholar
  39. 39.
    Nothdurft FP, Neumann K, Knauber AW. Fracture behavior of zirconia implant abutments is influenced by superstructure-geometry. Clin Oral Investig. 2014;18(5):1467–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Oblak C, Verdenik I, Swain MV, Kosmac T. Survival-rate analysis of surface treated dental zirconia (Y-TZP) ceramics. J Mater Sci Mater Med. 2014;25(10):2255–64.CrossRefPubMedGoogle Scholar
  41. 41.
    Oderich E, Boff LL, Cardoso AC, Magne P. Fatigue resistance and failure mode of adhesively restored custom implant zirconia abutments. Clin Oral Implants Res. 2012;23(12):1360–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Pereira GKR, Silvestri T, Amaral M, Rippe MP, Kleverlaan CJ, Valandro LF. Fatigue limit of polycrystalline zirconium oxide ceramics: effect of grinding and low-temperature aging. J Mech Behav Biomed Mater. 2016;61:45–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Rueda AO, Anglada M, Jimenez-Pique E. Contact fatigue of veneer feldspathic porcelain on dental zirconia. Dent Mater. 2015;31(3):217–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Tsumita M, Kokubo Y, Kano T, Sasaki K. Effect of fatigue loading on the screw joint stability of zirconium abutment. J Prosthodont Res. 2013;57(3):219–23.CrossRefPubMedGoogle Scholar
  45. 45.
    Batalha-Silva S, de Andrada MA, Caldeira, Maia HP, Magne P. Fatigue resistance and crack propensity of large MOD composite resin restorations: direct versus CAD/CAM inlays. Dent Mater. 2013;29(3):324–31.CrossRefPubMedGoogle Scholar
  46. 46.•
    Belli R, Petschelt A, Lohbauer U. Are linear elastic material properties relevant predictors of the cyclic fatigue resistance of dental resin composites? Dent Mater. 2014;30(4):381–91. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  47. 47.
    Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater. 2014;30(4):424–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Bijelic-Donova J, Garoushi S, Vallittu PK, Lassila LVJ. Mechanical properties, fracture resistance, and fatigue limits of short fiber reinforced dental composite resin. J Prosthet Dent. 2016;115(1):95–102.CrossRefPubMedGoogle Scholar
  49. 49.
    Bonfante EA, Suzuki M, Lorenzoni FC, Sena LA, Hirata R, Bonfante G, et al. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns. Dent Mater. 2015;31(8):e168–77.CrossRefPubMedGoogle Scholar
  50. 50.
    Carvalho AO, Bruzi G, Giannini M, Magne P. Fatigue resistance of CAD/CAM complete crowns with a simplified cementation process. J Prosthet Dent. 2014;111(4):310–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Agnol D, Cezarotto RJ, Ghiggi PC, Paranhos MPG, Borges GA, Burnett LH, et al. Influence of resin cements on cuspal deflection and fracture load of endodontically-treated teeth restored with composite inlays. Acta Odontol Scand. 2013;71(3-4):664–70.CrossRefGoogle Scholar
  52. 52.
    Guess PC, Vagkopoulou T, Zhang Y, Wolkewitz M, Strub JR. Marginal and internal fit of heat pressed versus CAD/CAM fabricated all-ceramic onlays after exposure to thermo-mechanical fatigue. J Dent. 2014;42(2):199–209.CrossRefPubMedGoogle Scholar
  53. 53.
    Iwasaki N, Takahashi H, Koottathape N, Kanehira M, Finger WJ, Sasaki K. Texture of composite resins exposed to two- and three-body wear in vitro. J Contemp Dent Pract. 2014;15(2):232–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Lawson NC, Burgess JO. Wear of nanofilled dental composites at varying filler concentrations. J Biomed Mater Res B Appl Biomater. 2015;103(2):424–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Magne P, Boff LL, Oderich E, Cardoso AC. Computer-aided-design/computer-assisted-manufactured adhesive restoration of molars with a compromised cusp: effect of fiber-reinforced immediate dentin sealing and cusp overlap on fatigue strength. J Esthet Restor Dent. 2012;24(2):135–46.CrossRefPubMedGoogle Scholar
  56. 56.
    Majd B, Majd H, Porter JA, Romberg E, Arola D. Degradation in the fatigue strength of dentin by diamond bur preparations: importance of cutting direction. J Biomed Mater Res B Appl Biomater. 2016;104(1):39–49.CrossRefPubMedGoogle Scholar
  57. 57.
    Martins LM, Bonfante EA, Zavanelli RA, Freitas AC, Silva, Nelson RFA, et al. Fatigue reliability of 3 single-unit implant-abutment designs. Implant Dent. 2012;21(1):67–71.CrossRefPubMedGoogle Scholar
  58. 58.
    Mühlemann S, Truninger TC, Stawarczyk B, Hämmerle CHF, Sailer I. Bending moments of zirconia and titanium implant abutments supporting all-ceramic crowns after aging. Clin Oral Implants Res. 2014;25(1):74–81.CrossRefPubMedGoogle Scholar
  59. 59.
    Mutluay MM, Yahyazadehfar M, Ryou H, Majd H, Do D, Arola D. Fatigue of the resin-dentin interface: a new approach for evaluating the durability of dentin bonds. Dent Mater. 2013;29(4):437–49.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mutluay MM, Zhang K, Ryou H, Yahyazadehfar M, Majd H, Xu HHK, et al. On the fatigue behavior of resin-dentin bonds after degradation by biofilm. J Mech Behav Biomed Mater. 2013;18:219–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Pameijer CH, Garcia-Godoy F, Morrow BR, Jefferies SR. Flexural strength and flexural fatigue properties of resin-modified glass ionomers. J Clin Dent. 2015;26(1):23–7.PubMedGoogle Scholar
  62. 62.
    Pérez MA. Life prediction of different commercial dental implants as influence by uncertainties in their fatigue material properties and loading conditions. Comput Methods Prog Biomed. 2012;108(3):1277–86.CrossRefGoogle Scholar
  63. 63.
    Rack T, Rack T, Zabler S, Rack A, Riesemeier H, Nelson K. An in vitro pilot study of abutment stability during loading in new and fatigue-loaded conical dental implants using synchrotron-based radiography. Int J Oral Maxillofac Implants. 2013;28(1):44–50.CrossRefPubMedGoogle Scholar
  64. 64.
    Ramírez-Sebastià A, Bortolotto T, Cattani-Lorente M, Giner L, Roig M, Krejci I. Adhesive restoration of anterior endodontically treated teeth: influence of post length on fracture strength. Clin Oral Investig. 2014;18(2):545–54.CrossRefPubMedGoogle Scholar
  65. 65.
    Rocca GT, Gregor L, Sandoval MJ, Krejci I, Dietschi D. In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases and interface treatments. “Post-fatigue adaptation of indirect composite restorations”. Clin Oral Investig. 2012;16(5):1385–93.CrossRefPubMedGoogle Scholar
  66. 66.
    Salaverry A, Borges GA, Mota EG, Burnett Júnior LH, Spohr AM. Effect of resin cements and aging on cuspal deflection and fracture resistance of teeth restored with composite resin inlays. J Adhes Dent. 2013;15(6):561–8.PubMedGoogle Scholar
  67. 67.
    Shembish FA, Tong H, Kaizer M, Janal MN, van Thompson P, Opdam NJ et al. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent Mater. 2016.Google Scholar
  68. 68.
    Shemtov-Yona K, Rittel D. On the mechanical integrity of retrieved dental implants. J Mech Behav Biomed Mater. 2015;49:290–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Shemtov-Yona K, Rittel D, Dorogoy A. Mechanical assessment of grit blasting surface treatments of dental implants. J Mech Behav Biomed Mater. 2014;39:375–90.CrossRefPubMedGoogle Scholar
  70. 70.
    Silva NR, Teixeira HS, Silveira LM, Bonfante EA, Coelho PG, van Thompson P. Reliability and failure modes of a hybrid ceramic abutment prototype. J Prosthodont. 2016.Google Scholar
  71. 71.
    Skouridou N, Pollington S, Rosentritt M, Tsitrou E. Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service. Dent Mater. 2013;29(6):e70–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Stappert CFJ, Baldassarri M, Zhang Y, Hänssler F, Rekow ED, Van Thompson P. Reliability and fatigue failure modes of implant-supported aluminum-oxide fixed dental prostheses. Clin Oral Implants Res. 2012;23(10):1173–80.CrossRefPubMedGoogle Scholar
  73. 73.
    Stimmelmayr M, Edelhoff D, Güth J, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater. 2012;28(12):1215–20.CrossRefPubMedGoogle Scholar
  74. 74.
    Stimmelmayr M, Sagerer S, Erdelt K, Beuer F. In vitro fatigue and fracture strength testing of one-piece zirconia implant abutments and zirconia implant abutments connected to titanium cores. Int J Oral Maxillofac Implants. 2013;28(2):488–93.CrossRefPubMedGoogle Scholar
  75. 75.
    Stona D, Burnett LH, Mota EG, Spohr AM. Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments. J Am Dent Assoc (1939). 2015;146(7):501–7.CrossRefGoogle Scholar
  76. 76.
    Takano T, Tasaka A, Yoshinari M, Sakurai K. Fatigue strength of Ce-TZP/Al2O3 nanocomposite with different surfaces. J Dent Res. 2012;91(8):800–4.CrossRefPubMedGoogle Scholar
  77. 77.
    Tiossi R, Gomes ÉA, Faria ACL, Rodrigues RCS, Ribeiro RF. Influence of cyclic fatigue in water on screw torque loss of long-span one-piece implant-supported zirconia frameworks. J Prosthodont. 2015.Google Scholar
  78. 78.
    Wandscher VF, Bergoli CD, de Oliveira AF, Kaizer OB, Souto Borges AL, Limberguer IF, et al. Fatigue surviving, fracture resistance, shear stress and finite element analysis of glass fiber posts with different diameters. J Mech Behav Biomed Mater. 2015;43:69–77.CrossRefPubMedGoogle Scholar
  79. 79.
    Wang R, Tao J, Yu B, Dai L. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent. 2014;111(4):318–26.CrossRefPubMedGoogle Scholar
  80. 80.
    Wong TL, Botelho MG. The fatigue bond strength of fixed-fixed versus cantilever resin-bonded partial fixed dental prostheses. J Prosthet Dent. 2014;111(2):136–41.CrossRefPubMedGoogle Scholar
  81. 81.
    Xia D, Lin H, Yuan S, Bai W, Zheng G. Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values. Bio-Med Mater Eng. 2014;24(6):2143–9.Google Scholar
  82. 82.
    Yahyazadehfar M, Mutluay MM, Majd H, Ryou H, Arola D. Fatigue of the resin-enamel bonded interface and the mechanisms of failure. J Mech Behav Biomed Mater. 2013;21:121–32.CrossRefPubMedGoogle Scholar
  83. 83.
    Yao K, Kao H, Cheng C, Fang H, Huang C, Hsu M. The potential risk of conical implant-abutment connections: the antirotational ability of Cowell implant system. Clin Implant Dent Relat Res. 2015;17(6):1208–16.CrossRefPubMedGoogle Scholar
  84. 84.
    Zamboni SC, Nogueira L, Bottino MA, Sobrinho LC, Valandro LF. The effect of mechanical loading on the cusp defection of premolars restored with direct and indirect techniques. J Contemp Dent Pract. 2014;15(1):75–81.CrossRefPubMedGoogle Scholar
  85. 85.
    Zhao K, Wei Y, Pan Y, Zhang X, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dent Mater. 2014;30(2):164–71.CrossRefPubMedGoogle Scholar
  86. 86.
    Zicari F, van Meerbeek B, Scotti R, Naert I. Effect of fibre post length and adhesive strategy on fracture resistance of endodontically treated teeth after fatigue loading. J Dent. 2012;40(4):312–21.CrossRefPubMedGoogle Scholar
  87. 87.
    Zicari F, van Meerbeek B, Scotti R, Naert I. Effect of ferrule and post placement on fracture resistance of endodontically treated teeth after fatigue loading. J Dent. 2013;41(3):207–15.CrossRefPubMedGoogle Scholar
  88. 88.••
    Rosentritt M, Siavikis G, Behr M, Kolbeck C, Handel G. Approach for valuating the significance of laboratory simulation. J Dent. 2008;36(12):1048–53. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  89. 89.••
    Rosentritt M, Behr M, van der Zel, Jef M, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater. 2009;25(3):348–52. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  90. 90.
    Lin J, Sun M, Zheng Z, Shinya A, Han J, Lin H, et al. Effects of rotating fatigue on the mechanical properties of microhybrid and nanofiller-containing composites. Dent Mater J. 2013;32(3):476–83.CrossRefPubMedGoogle Scholar
  91. 91.
    Ruben JL, Roeters FJM, Montagner AF, Huysmans MCDNJM. A multifunctional device to simulate oral ageing: the “Rub&Roll”. J Mech Behav Biomed Mater. 2014;30:75–82.CrossRefPubMedGoogle Scholar
  92. 92.
    ISO 14801:2007. Dentistry —implants—dynamic fatigue test for endosseous dental implants. Berlin: Beuth Verlag; 2007.Google Scholar
  93. 93.•
    Bonfante EA, Coelho PG. A critical perspective on mechanical testing of implants and prostheses. Adv Dent Res. 2016;28(1):18–27. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  94. 94.
    de Gee AJ, Pallav P, Davidson CL. Effect of abrasion medium on wear of stress-bearing composites and amalgam in vitro. J Dent Res. 1986;65(5):654–8. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  95. 95.••
    Lohbauer U, Krämer N, Petschelt A, Frankenberger R. Correlation of in vitro fatigue data and in vivo clinical performance of a glass ceramic material. Dent Mater. 2008;24(1):39–44. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  96. 96.
    Belli R, Petschelt A, Hofner B, Hajtó J, Scherrer SS, Lohbauer U. Fracture rates and lifetime estimations of CAD/CAM all-ceramic restorations. J Dent Res. 2016;95(1):67–73.CrossRefPubMedGoogle Scholar
  97. 97.••
    Bayne SC. Correlation of clinical performance with ‘in vitro tests’ of restorative dental materials that use polymer-based matrices. Dent Mater. 2012;28(1):52–71. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  98. 98.
    Sundarapandian V. New results on the parametric stability of nonlinear systems. Math Comput Model. 2005;2005(43):9–15.Google Scholar
  99. 99.•
    Della Bona A, Wozniak WT, Watts DC. International dental standards—order out of chaos? Dent Mater. 2011;27(7):619–21. Proving important basic knowledge on the topic.CrossRefPubMedGoogle Scholar
  100. 100.
    Scherrer SS, Quinn JB, Quinn GD, Wiskott HWA. Fractographic ceramic failure analysis using the replica technique. Dent Mater. 2007;23(11):1397–404.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Prosthetic DentistryRegensburg University Medical CenterRegensburgGermany

Personalised recommendations