Current Oral Health Reports

, Volume 3, Issue 2, pp 65–73 | Cite as

Oral Cancer and Cancer Stem Cells: Relevance to Oral Cancer Risk Factors, Premalignant Lesions, and Treatment

  • Victoria M. Prince
  • Silvana Papagerakis
  • Mark E. PrinceEmail author
Oral Neoplasia (F Alawi and A Le, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Oral Neoplasia


Cancer stem cells are recognized as the most critical cancer cells. They are responsible for cancer progression, the development of metastasis, and treatment failures. There are a number of well-studied surface proteins and enzymatic processes that can be used to isolate cancer stem cells from the bulk of the other cancer cells. The role of cancer stems cells in premalignant lesions of the oral cancer is poorly understood but slowly evolving. Novel therapies are being developed to more effectively eradicate cancer stem cells and improve patient outcomes. Efforts to improve our understanding of this important subpopulation of cancer cells is vital in directing further studies to advance our ability to prevent patients from developing oral cancer and to providing more effective treatment for those that do.


Oral cancer Cancer stem cells Leukoplakia Erythroplakia 


Compliance with Ethical Standards

Conflict of Interest

Victoria M Prince, Silvana Papagerakis, and Mark E Prince declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.•
    Papagerakis S, Pannone G, Zheng L, About I, Taqid N, Nguyen NPT, et al. Oral epithelial stem cells—implications in normal development and cancer metastasis. Exp Cell Res. 2014;325(2):111–29. Comprehensive review of oral cavity cancer stem cells.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.•
    González-Moles MA, Scully C, Ruiz-Ávila I, Plaza-Campillo JJ. The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncol. 2013;49:738–46. Provides a basis for understanding the current state of cancer stem cell research with a focus on oral cavity cancer.CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Hajj M, Becker MW, Wicha M, et al. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev. 2004;14(1):43–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Azizi E, Wicha MS. Point: cancer stem cells—the evidence accumulates. Clin Chem. 2013;59(1):205–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Athanassiou-Papaefthymiou M, Shkeir O, Kim D, Divi V, Matossian M, Owen JH, et al. Evaluation of CD44 variant expression in oral, head and neck squamous cell carcinomas using a triple approach and its clinical significance. Int J Immunopathol Pharmacol. 2014;27(3):337–49.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. Erratum in: Proc Natl Acad Sci U S A. 2003 May 27; 100(11):6890.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci. 2007;104(3):973–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Clay MR, Tabor M, Owen J, et al. Aldehyde dehydrogenase activity alone can identify cancer stem cells in head and neck squamous cell cancer. Head Neck. 2010;32(9):1195–201.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMedGoogle Scholar
  11. 11.
    Alamgeer M, Peacock CD, Matsui W, et al. Cancer stem cells in lung cancer: evidence and controversies. Respirology. 2013;18:757–64.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Investig. 2013;1911–1918.Google Scholar
  14. 14.
    Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vaiopoulos AG, Kostakis ID, Koutsilieris M, et al. Colorectal cancer stem cells. Stem Cells. 2012;30:363–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest. 2004;113(2):175–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chinn SB, Darr OA, Owen JH, et al. Cancer stem cells: mediators of tumorigenesis and metastasis in head and neck squamous cell carcinoma. Head Neck. 2015;37(3):317–26.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang SJ, Wong G, de Heer AM, et al. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope. 2009;119(8):1518–30.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Biddle A, Liang X, Gammon L, et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 2011;71:5317–26.CrossRefPubMedGoogle Scholar
  20. 20.
    Gemenetzidis E, Gammon L, Biddle A, et al. Invasive oral cancer stem cells display resistance to ionising radiation. Oncotarget. 2015. doi: 10.18632/oncotarget.6268.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Desiderio V, Papagerakis P, Tirino V, Zheng L, Matossian M, Prince ME, et al. Increased fucosylation has a pivotal role in invasive and metastatic properties of head and neck cancer stem cells. Oncotarget. 2015;6(1):71–84.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen YC, Chen YW, Hsu HS, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun. 2009;385(3):307–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sophos NA, Vasiliou V. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact. 2003;143–144:5–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Kurth I, Hein L, Mäbert K, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lu C, Xu F, Gu J, et al. Clinical and biological significance of stem-like CD133+ CXCR4+ cells in esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg. 2015;15(2):386–95.CrossRefGoogle Scholar
  27. 27.
    Zhou L, Wei X, Cheng L, Tian J, Jiang JJ. CD133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope. 2007;117(3):455–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Z, Filho MS, Nör JE. The biology of head and neck cancer stem cells. Oral Oncol. 2012;48(1):1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mărgăritescu C, Pirici D, Simionescu C, et al. The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Rom J Morphol Embryol. 2011;52(3 Suppl):985–93.PubMedGoogle Scholar
  30. 30.
    Van Leenders GJ, Sookhlall R, Teubel WJ, et al. Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS One. 2011;6(11):e26753. doi: 10.1371/journal.pone.0026753.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vermeulen L, De Sousa E, Melo F, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Ohnish T, Daikuhara Y. Hepatocyte growth factor/scatter factor in development, inflammation and carcinogenesis: its expression and role in oral tissues. Arch Oral Biol. 2003;48:797–804.CrossRefGoogle Scholar
  33. 33.
    Lim YC, Han JH, Kang HJ, et al. Overexpression of c-Met promotes invasion and metastasis of small oral tongue carcinoma. Oral Oncol. 2012;48:1114–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Lim YC, Kang HJ, Moon JH. c-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral Oncol. 2014;50(7):633–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Tabor MH, Clay MR, Owen JH, et al. Head and neck cancer stem cells: the side population. Laryngoscope. 2011;121(3):527–33.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang YH, Li F, Luo B, et al. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasm. 2009;56(5):371–8.CrossRefGoogle Scholar
  37. 37.
    Ho MM, Ng AV, Lam S, et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 2007;67(10):4827–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Yu D, Jin C, Liu Y, et al. Clinical implications of cancer stem cell-like side population cells in human laryngeal cancer. Tumour Biol. 2013;34(6):3603–10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang P, Zhang Y, Mao L, et al. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett. 2009;277(2):227–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Alcantara Llaguno SR, Chen J, Parada LF. Signaling in malignant astrocytomas: role of neural stem cells and its therapeutic implications. Clin Cancer Res. 2009;15:7124–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.•
    Pezzuto F, Buonaguro L, Caponigro F, Ionna F, Starita N, Annunziata C, et al. Update on head and neck cancer: current knowledge on epidemiology, risk factors, molecular features and novel therapies. Oncology. 2015;89(3):125–36. Comprehensive review of the risk factors and molecular biology of head and neck squamous cell cancer.CrossRefPubMedGoogle Scholar
  42. 42.
    White AC, Tran K, Khuu J, Dang C, et al. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc Natl Acad Sci. 2011;108:7425–30.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lapouge G, Youssef KK, Vokaer B, et al. Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci. 2011;108:7431–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tang X, Scognamiglio T, Gudas LJ. Basal stem cells contribute to squamous cell carcinomas in the oral cavity. Carcinogenesis. 2013;34(5):1158–64.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hashibe M, Brennan P, Chuang SC, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541–50.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    National Cancer Institute and Centers for Disease Control and Prevention. Smokeless tobacco and public health: a global perspective. NIH Publication No. 14–7983. Bethesda, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute. 2014.Google Scholar
  47. 47.
    Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194–210.CrossRefPubMedGoogle Scholar
  48. 48.
    Yu C-C, Chang Y-C. Enhancement of cancer stem-like and epithelial–mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL. Toxicol Appl Pharmacol. 2013;226:459–69.CrossRefGoogle Scholar
  49. 49.
    Druesne-Pecollo N, Tehard B, Mallet Y, et al. Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol. 2009;10:173–80.CrossRefPubMedGoogle Scholar
  50. 50.
    Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr. 2010;5:121–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Osei-Sarfo K, Tang XH, Urvalek AM, et al. The molecular features of tongue epithelium treated with the carcinogen 4-nitroquinoline-1-oxide and alcohol as a model for HNSCC. Carcinogenesis. 2013;34(11):2673–81.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fakhry C, Zhang Q, Nguyen-Tan PF, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. Clin Oncol. 2014;32(30):3365–73.CrossRefGoogle Scholar
  54. 54.•
    Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus positive head and neck squamous cell carcinoma. J Clin Oncol. 2015;33(29):3235–42. Comprehensive review of the epidemiology of HPV infection.CrossRefPubMedGoogle Scholar
  55. 55.
    Egawa N, Egawa K, Griffin H, et al. Human papillomaviruses, epithelial tropisms, and the development of neoplasia. Viruses. 2015;2007(7):3863–90.CrossRefGoogle Scholar
  56. 56.
    Hsu YC, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20(8):847–56.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.•
    Pullos AN, Castilho RM, Squarize CH. HPV infection of the head and neck region and its stem cells. J Dent Res. 2015;94(11):1532–43. Provides a review of HPV infection and its relevance to head and neck cancer and treatment.CrossRefPubMedGoogle Scholar
  58. 58.
    Modur V, Thomas-Robbins K, Rao K. HPV and CSC in HNSCC cisplatin resistance. Front Biosci (Elite Ed). 2015;7:58–66.CrossRefGoogle Scholar
  59. 59.
    Tang AL, Owen JH, Hauff SJ, et al. Head and neck cancer stem cells: the effect of HPV—an in vitro and mouse study. Otolaryngol Head Neck Surg. 2013;149(2):252–60.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang M, Kumar B, Piao L, et al. Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 2014;120(7):992–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rietbergen MM, Martens-de Kemp SR, Bloemena E, et al. Cancer stem cell enrichment marker CD98: a prognostic factor for survival in patients with human papillomavirus-positive oropharyngeal cancer. Eur J Cancer. 2014;50(4):765–73.CrossRefPubMedGoogle Scholar
  62. 62.
    Zimmermann M, Zouhair A, Azria D, et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol. 2006;1:11. Published Online.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fitzpatrick SG, Katz J. The association between periodontal disease and cancer: a review of the literature. J Dent. 2010;38(2):83–95.CrossRefPubMedGoogle Scholar
  64. 64.
    Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control. 2012;23:399–404.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ha NH, Woo BH, Kim DJ, et al. Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties. Tumor Biol. 2015. doi: 10.1007/s13277-015-3764-9. Published on-line first.Google Scholar
  66. 66.
    Liu W, Wang YF, Zhou HW, et al. Malignant transformation of oral leukoplakia: a retrospective cohort study of 218 Chinese patients. BMC Cancer. 2010;10:685.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Liu W, Wu L, Shen X, et al. Expression patterns of cancer stem cell markers ALDH1 and CD133 correlate with a high risk of malignant transformation of oral leukoplakia. Cancer. 2013;132:868–74.Google Scholar
  68. 68.
    Feng JQ, Xu ZY, Shi LJ, et al. Expression of cancer stem cell markers ALDH1 and Bmi1 in oral erythroplakia and the risk of oral cancer. J Oral Pathol Med. 2013;42:148–53.CrossRefPubMedGoogle Scholar
  69. 69.
    van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; present concepts of management. Oral Oncol. 2010;46:423–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Simple M, Suresh A, Das D, et al. Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol. 2015;51:643–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Bourguignon LY, Wong G, Earle C, et al. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. 2012;287(39):32800–24.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Damek-Poprawa M, Volgina A, Korostoff J, et al. Targeted inhibition of CD133+ cells in oral cancer cell lines. J Dent Res. 2011;90(5):638–45.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Waldron NN, Kaufman DS, Oh S, et al. Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer. Mol Cancer Ther. 2011;10(10):1829–38.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Murillo-Sauca O, Chung MK, Shin JH, et al. CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget. 2014;5(16):6854–66.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Li Q, Lu L, Tao H, et al. Generation of a novel dendritic-cell vaccine using melanoma and squamous cancer stem cells. J Vis Exp. 2014;83:e50561.PubMedGoogle Scholar
  77. 77.
    Ning N, Pan Q, Zheng F, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72(7):1853–64.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kuo SZ, Blair KJ, Rahimy E, et al. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer. 2012;12:556.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chiu CC, Lee LY, Li YC, et al. Grp78 as a therapeutic target for refractory head-neck cancer with CD24(−)CD44(+) stemness phenotype. Cancer Gene Ther. 2013;20(11):606–15.CrossRefPubMedGoogle Scholar
  80. 80.
    Bertrand G, Maalouf M, Boivin A, et al. Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev. 2014;10(1):114–26.CrossRefPubMedGoogle Scholar
  81. 81.
    Gan GN, Eagles J, Keysar SB. Hedgehog signaling drives radioresistance and stroma-driven tumor repopulation in head and neck squamous cancers. Cancer Res. 2014;74(23):7024–36.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ma L, Zhang G, Miao XB, et al. Cancer stem-like cell properties are regulated by EGFR/AKT/B-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. FEBS J. 2013;280(9):2027–41. 79.CrossRefPubMedGoogle Scholar
  83. 83.•
    Dragu DL, Necula LG, Bleotu C, et al. Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells. 2015;7(9):1185–201. Thoughtful and well written summary of novel treatments targeting cancer stem cells.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Victoria M. Prince
    • 1
  • Silvana Papagerakis
    • 1
  • Mark E. Prince
    • 1
    Email author
  1. 1.Department of Otolaryngology-HNSUniversity of MichiganAnn ArborUSA

Personalised recommendations