Advertisement

Policosanols: Chemistry, Occurrence, and Health Effects

  • Monthana WeerawatanakornEmail author
  • Kanyaphat Meerod
  • Donporn Wongwaiwech
  • Chi-Tang Ho
Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • 8 Downloads
Part of the following topical collections:
  1. Topical Collection on Natural Products: From Chemistry to Pharmacology

Abstract

Purpose of Review

Overwhelming evidence indicates that reduction of blood low-density lipoprotein cholesterol (LDL-C), ratio of LDL-C/HDL-C, and TG/HDL-C ameliorate the occurrence of atherosclerotic cardiovascular disease. Long-chain alcohols and aldehydes known generically as policosanol (PC) and policosanal have attracted attention from researchers and scientists due to their cholesterol-lowering health benefits. Many researchers reported that PC decreased serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to update research data and establish the optimal future research direction of PC as a cholesterol-lowering alternative for use in food, dietary supplements, and pharmaceutical industries.

Recent Findings

PC distribution differs in individual plants and maturity stage affects composition. PCs are considered as limiting nutraceuticals. Regular food sources for humans include rice bran oil, olive oil especially cold-pressed extraction, and non-centrifugal sugar products from sugarcane. Waste products discarded from rice bran oil are considered as good sources of policosanol. Most human clinical trials found PC to be effective in reducing serum cholesterol, whereas others reported no effect, especially for PC extracted from dietary sources. Inhibition of HMG-CoA reductase as the rate-controlling enzyme of the mevalonate pathway has been proved as the cellular mechanism which lowers serum-cholesterol levels. This review offers ideas for the direction of future PC research.

Summary

PC is a limited nutraceutical which offers promise for the prevention of hypercholesterolemia. Further studies are required to determine an effective PC composition for cholesterol reduction which will benefit the food, dietary supplement, and pharmaceutical industries.

Keywords

Policosanol Serum cholesterol Hypocholesterolemic effect Dietary source 

Abbreviations

ABAC 1

ATP-binding cassette subfamily A member 1

ADP

Adenosine diphosphate

ApoA1

Apolipoprotein A1

ApoB

Apolipoprotein B

AST

Aspartate aminotransferase

CETP

Cholesteryl ester transport protein

CPK

Creatine phosphokinase

CRP

C-reactive protein

CVD

Cardiovascular disease

CYP7A1

Cytochrome P450 cholesterol 7α-hydroxylase

FXR

Farnesoid X receptor

GC-MS

Gas chromatography with mass spectrometry

GC-FID

Gas chromatography with flame ionization detector

GC-TOFMS

Gas chromatography time-of-flight mass spectrometry

GGE

Gradient gel electrophoresis

Hcy

Homocysteine

HDL-C

High-density lipoprotein cholesterol

HMG-CoA

3-Hydroxy-3-methylglutoryl coenzyme A

HO-1

Heme oxygenase-1

HPLC

High-performance liquid chromatography

IDL

Intermediate-density lipoprotein

LCAT

Lecithincholesterol acyltransferase

LDM

Lipid-depleted medium

LDL-C

Low-density lipoprotein cholesterol

LDL-R

LDL receptor

LXR

Liver X receptor

NIDDM

Non-insulin-dependent diabetes mellitus

Nrf2

Nuclear factor erythroid 2-related factor 2 policosanol (PC)

OC

Octacosanol

PGI2

Prostacyclin

PON1

Paraoxonase-1

SREBP-1c

Sterol regulatory element-binding protein-1c

SREBP2

Sterol regulatory element-binding protein-2

TC

Serum total cholesterol

T2DM

Type 2 diabetes mellitus

TG

Serum triglyceride

TxA2

Thromboxane A2

TxB2

Thromboxane B2

VLDL

Very low-density lipoprotein

Notes

Acknowledgements

This review article was supported by the National Research Council of Thailand for project number of R2562B033.

References

  1. 1.
    Irmak S, Dunford NT, Milligan J. Policosanol contents of beeswax, sugar cane and wheat extracts. Food Chem. 2006;95(2):312–8.CrossRefGoogle Scholar
  2. 2.
    Arruzazabala ML, Noa M, Menendez R, Más R, Carbajal D, Valdés S, et al. Protective effect of policosanol on atherosclerotic lesions in rabbits with exogenous hypercholesterolemia. Braz J Med Biol Res. 2000;33(7):835–40.CrossRefPubMedGoogle Scholar
  3. 3.
    Francini-Pesenti F, Beltramolli D, Acqua DS, Brocadello F. Effect of sugar cane policosanol on lipid profile in primary hypercholesterolemia. Phytother Res. 2008;22(3):318–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Janikula M. Policosanol: a new treatment for cardiovascular disease? Altern Med Rev. 2002;3:203–17.Google Scholar
  5. 5.
    Chen ZY, Jiao R, Ma KY. Cholesterol lowering nutraceuticals and functional foods. J Agr Food Chem. 2008;56(9):8761–73.CrossRefGoogle Scholar
  6. 6.
    Menendez R, Fernandez SI, Del Rio A, Gonzalez RM, Fraga V, Amor AM, et al. Policosanol inhibits cholesterol biosynthesis and enhances low density lipoprotein processing in cultured human fibroblasts. Biol Res. 1994;27(3–4):199–203.PubMedGoogle Scholar
  7. 7.
    Menendez R, Arruzazabala L, Más R. Cholesterol-lowering effect of policosanol on rabbits with hypercholesterolaemia induced by a wheat starch-casein diet. Br J Nutr. 1997;77(6):923–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Menendez R, Amor AM, Rodeiro I, González RM, González PC, Alfonso JL, et al. Policosanol modulates HMG-CoA reductase activity in cultured fibroblasts. Arch Med Res. 2001;32(1):8–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Alemán CL, Mas R, Hernandez C, Rodeiro I, Cerejido E, Noa M, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Rodríguez-Echenique C, Mesa R, Más R, Noa M, Menéndez R, González RM, et al. Effects of policosanol chronically administered in male monkeys (Macaca arctoides). Food Chem Toxicol. 1994;32(6):565–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Rodriguez MD, Gamez R, Sanchez M, García H. Developmental toxicity of D-002 (a mixture of aliphatic primary alcohols) in rats and rabbits. J Appl Toxicol. 1998;18(5):313–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Alemán CL, Puig MN, Elias EC, Ortega CH, Guerra IR, Ferreiro RM, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33(7):573–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Gamez R, Aleman CL, Más R, Noa M, Rodeiro I, García H, et al. A 6-month study on the toxicity of high doses of policosanol orally administered to Sprague-Dawley rats. J Med Food. 2001;4(2):57–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Pons P, Rodriquez M, Robaina C, Illnait J, Más R, Fernández L, et al. Effects of successive dose increases of policosanol on the lipid profile of patients with type II hypercholesterolemia and tolerability to treatment. Int J Clin Pharmacol Res. 1994b;14(1):27–33.PubMedGoogle Scholar
  15. 15.
    Canetti MM, Moreira M, Más R, Illnait J, Fernández L, Fernández JC. Effects of policosanol on primary hypercholesterolemia: a 3-year openextension follow-up. Curr Ther Res. 1997;58(11):868–75.CrossRefGoogle Scholar
  16. 16.
    Fernandez L, Más R, Illnait J, Fernández JC. Policosanol: results of a postmarketing surveillance study of 27,879 patients. Curr Ther Res. 1998;59(10):717–22.CrossRefGoogle Scholar
  17. 17.
    Cubeddu LX, Cubeddu RJ, Heimowitz T, Restrepo B, Lamas GA, Weinberg GB. Comparative lipid-lowering effects of policosanol and atorvastatin: a randomized, parallel, double-blind, placebo-controlled trial. J. Am Heart. 2006;152(5) 982.e1-e5.Google Scholar
  18. 18.
    Cravotto G, Binello A, Merizzi G, Avogadro M. Improving solvent-free extraction of policosanol from rice bran by high-intensity ultrasound treatment. Eur J Lipid Sci Technol. 2004;106(3):147–51.CrossRefGoogle Scholar
  19. 19.
    Wang L, Weller CL, Schlegel VL, Carr TP, Cuppett SL. Comparison of supercritical CO2 and hexane extraction of lipids from sorghum distillers grains. Eur J Lipid Sci Technol. 2007;109:567–74.CrossRefGoogle Scholar
  20. 20.
    Chen Y, Dunford NT, Edwards J, Carver B, Goad C. Policosanol content and composition of wheat varieties as affected by environment. J Sci Food Agric. 2009;89:310–4.CrossRefGoogle Scholar
  21. 21.
    Cherif AO, Messaouda MB, Kaabi B, Boukhchina S, Pepe C, Kallel H. Comparison of the concentrations of long-chain alcohols (policosanol) in three Tunisian peanut varieties (Arachis hypogaea L.). J Agric Food Chem. 2010;58(23):12143–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Ma J, Ma L, Zhang H, Zhang Z, Wang Y, Li K, et al. Policosanol fabrication from insect wax and optimization by response surface methodology. PLoS One. 2018;15(3):1–14.Google Scholar
  23. 23.
    Adhikari P, Keum TH, Jae NP, Choong KK. Policosanol content and composition in perilla seeds. J Agric Food Chem. 2006;54(15):5359–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JK, Park SY, Na JK, Seong ES, Yu CY. Metabolite profiling based on lipophilic compounds for quality assessment of perilla (Perilla frutescens) cultivars. J Agric Food Chem. 2012;60(9):2257–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Keum TH, Ji EK, Weller CL. Policosanol contents and compositions in wax-like materials extracted from selected cereals of Korean origin. Cereal Chem. 2005;82(3):242–5.CrossRefGoogle Scholar
  26. 26.
    Athukorala Y, Mazza G. Supercritical carbon dioxide and hexane extraction of wax from triticale straw: content, composition and thermal properties. Ind Crop Prod. 2010;31(3):550–6.CrossRefGoogle Scholar
  27. 27.
    Harrabi S, Boukhchina S, Mayer PM, Kallel H. Policosanol distribution and accumulation in developing corn kernels. Food Chem [Internet]. Elsevier Ltd. 2009;115(3):918–23.CrossRefGoogle Scholar
  28. 28.
    Attard TM, Mcelroy CR, Rezende CA, Polikarpov I, Clark JH, Hunt AJ. Sugarcane waste as a valuable source of lipophilic molecules. Ind Crop Prod. 2015;76(15):95–103.CrossRefGoogle Scholar
  29. 29.
    Del Río JC, Marques G, Lino AG, Lima CF, Colodette JL, Gutiérrez A. Lipophilic phytochemicals from sugarcane bagasse and straw. Ind Crops Prod [Internet]. Elsevier B.V. 2015;77(23):992–1000.Google Scholar
  30. 30.
    Asikin Y, Takahashi M, Hirose N, Hou DX, Takara K, Wada K. Wax, policosanol, and long-chain aldehydes of different sugarcane (Saccharum officinarum L.) cultivars. Eur J Lipid Sci Technol. 2012;114:583–91.CrossRefGoogle Scholar
  31. 31.
    Asikin Y, Chinen T, Takara K, Wada K. Determination of long-chain alcohol and aldehyde contents in the non-centrifuged cane sugar Kokuto. Food Sci Technol Res. 2008;14(6):583–8.CrossRefGoogle Scholar
  32. 32.
    Jung EJ, Kwon SW, Jung BH, Oh SH, Lee BH. Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver. J Lipid Res. 2011;52(9):1617–25.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sakouhi F, Boukhchina S, Absalon C, Fouquet E, Kallel H. Policosanol characterization and accumulation during ripening of Tunisian Olea europaea L. fruits. Eur J Lipid Sci Technol. 2010;112:373–9.CrossRefGoogle Scholar
  34. 34.
    Harrabi S, Ferchichi A, Bacheli A, Fellah H. Policosanol composition, antioxidant and anti-arthritic activities of milk thistle (Silybium marianum L.) oil at different seed maturity stages. Lipids Health Dis. 2018;17(1):82.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Giuffrè AM, Capocasale M. Policosanol in tomato (Solanum lycopersicum L.) seed oil: the effect of cultivar. J. Oleo Sci. 2015;64(6):625–31.CrossRefPubMedGoogle Scholar
  36. 36.
    Park S-Y, Lee JG, Cho HS, Seong ES, Kim HY, Yu CY, et al. Metabolite profiling approach for assessing the effects of colored light-emitting diode lighting on the adventitious roots of ginseng (Panax ginseng CA Mayer). Plant Omics [Internet]. 2013;6(3):224–30.Google Scholar
  37. 37.
    Choi SJ, Park SY, Park JS, Park SK, Jung MY. Contents and compositions of policosanols in green tea (Camellia sinensis) leaves. Food Chem. 2016;204(1):94–101.CrossRefPubMedGoogle Scholar
  38. 38.
    Morrison WH, Holser R, Akin DE. Cuticular wax from flax processing waste with hexane and super critical carbon dioxide extractions. Ind Crop Prod. 2006;24(2):119–22.CrossRefGoogle Scholar
  39. 39.
    Kim SM, Chung HJ, Lim ST. Effect of various heat treatments on rancidity and some bioactive compounds of rice bran. J Cereal Science. 2014;60(1):243–8.CrossRefGoogle Scholar
  40. 40.
    Wongwaiwech D, Weerawatanakorn M, Tharatha S, Ho CT. Comparative study on amount of nutraceuticals in by-products from solvent and cold pressing methods of rice bran oil processing. J Food Drug Anal [Internet]. Elsevier Ltd. 2019; 27(1):71–82.Google Scholar
  41. 41.
    Weerawatanakorn M, Tamaki H, Asikin Y, Wada K, Takahashi M, Ho CT, et al. Policosanol contents, volatile profile and toxicity test of granulated cane sugar enriched with rice bran materials. IFRJ. 2017a;24(3):1019–28.Google Scholar
  42. 42.
    Lin Y, Rudrum M, van der Wielen RP, Trautwein EA, McNeill G, Sierksma A, et al. Wheat germ policosanol failed to lower plasma cholesterol in subjects with normal to mildly elevated cholesterol concentrations. Metabolism. 2004;53(10):1309–14.CrossRefPubMedGoogle Scholar
  43. 43.
    Singh DK, Li L, Porter TD. Policosanol inhibits cholesterol synthesis in hepatoma cells by activation of AMP-kinase. J Pharmacol ExpTher. 2006a;318(3):1020–6.CrossRefGoogle Scholar
  44. 44.
    Vali SR, Ju Y, Kaimal TNB, Chern Y. A process for the preparation of food-grade rice bran wax and the determination of its composition. J Am Oil Chem Soc. 2005;82(1):57–64.CrossRefGoogle Scholar
  45. 45.
    Ishaka A, Imam MU, Mahamud R, Zuki ABZ, Maznah I. Characterization of rice bran wax policosanol and its nanoemulsion formulation. Int J Nanomedicine. 2014;9(1):2261–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gülz PG, Müller E, Prasad BN. Developmental and seasonal variations in the epicuticular waxes of tiliatomentosa leaves. Phytochem. 1991;30(3):769–73.CrossRefGoogle Scholar
  47. 47.
    Weerawatanakorn M, Tamaki H, Asikin Y, Wada K, Takahashi M, Ho CT. Rice bran material enrichment of granulated cane brown sugar to increase policosanol contents. Int Sch Sci Res Innov. 2017b;11(1):54229.Google Scholar
  48. 48.
    Jung DM, Lee MJ, Yoon SH, Jung MY. A gas chromatography-tandem quadrupole mass spectrometric analysis of policosanols in commercial vegetable oils. J Food Sci. 2011;76(6):891–9.CrossRefGoogle Scholar
  49. 49.
    Laguna A, Magraner J, Carbajal D, Arruzazabala ML, Más R, García M. A mixture of higher primary aliphatic alcohols, its obtention from sugar cane wax and its pharmacological uses. US patent. US 5856316A.1999.Google Scholar
  50. 50.
    Menendez R, Marrero D, Más R, Fernandez I, Gonzalez L, Gonzalez R. In vitro and in vivo study of octacosanol metabolism. Arch Med Res. 2005;36(2):113–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Weerawatanakorn M, Asikin Y, Takahashi M, Tamaki H, Wada K, HO CT, et al. Physico-chemical properties, wax composition, aroma profiles, and antioxidant activity of granulated non-centrifugal sugars from sugarcane cultivars of Thailand. J Food Sci Technol. 2016;53(11):4084–92.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hargrove JL, Greenspan P, Hartle DK. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp Biol Med (Maywood). 2004;229(3):215–26.CrossRefGoogle Scholar
  53. 53.
    Chen ZY, Ka YM, Yintong L, Cheng P, Yuanyuan Z. Role and classification of cholesterol-lowering functional foods. J of Funct Foods. 2011;3(2):61–9.CrossRefGoogle Scholar
  54. 54.
    Barrios V, Carlos E, Arrigo FGC, David B, Peter F, Maciej B, et al. A nutraceutical approach (armolipid plus) to reduce total and LDL cholesterol in individuals with mild to moderate dyslipidemia: review of the clinical evidence. Atherosclerosis Supp. 2017;24:1–15.CrossRefGoogle Scholar
  55. 55.
    Bellingham C. Cerivastatin withdrawal: the impacts. Pharm J. 2001;267:222.Google Scholar
  56. 56.
    Sirtori CR, Galli C, Anderson JW, Arnoldi A. Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: focus on dietary proteins. Atherosclerosis. 2009;203(1):8–17.CrossRefPubMedGoogle Scholar
  57. 57.
    Marazzi G, Cacciotti L, Pelliccia F, Iaia L, Volterrani M, Caminiti G, et al. Long-term effects of nutraceuticals (berberine, red yeast rice, policosanol) in elderly hypercholesterolemic patients. Adv Ther. 2011;28(2):1105–13.CrossRefPubMedGoogle Scholar
  58. 58.
    Miyata Y, Takashi T, Kei T, Toshiro M, Shizuka T, Kazunari T. Cholesterol-lowering effect of black tea polyphenols, theaflavins, theasinensin a and thearubigins, in rats fed high fat diet. JFST. 2011;17(6):585–8.Google Scholar
  59. 59.
    Leifert WR, Abeywardena MY. Cardioprotective actions of grape polyphenols. Nutr Res. 2008;28(11):729–37.CrossRefPubMedGoogle Scholar
  60. 60.
    Calpe-Berdiel L, Escolà-Gil JC, Blanco-Vaca F. New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis. 2009;203(1):18–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem. 2007;18(3):179–83.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kim A, Chiu A, Barone MK, Avino D, Wang F, Coleman CI, et al. Green tea catechins decrease total and low-density lipoprotein cholesterol: a systematic review and meta-analysis. J Am Diet Assoc. 2011;111(11):1720–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Velasquez MT, Bhathena SJ. Role of dietary soy protein in obesity. Int J Med Sci. 2007;4(2):72–82.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90(3):485–92.CrossRefPubMedGoogle Scholar
  65. 65.
    Berthold HK, Unverdorben S, Degenhardt R, Bulitta M, Gouni-Berthold I. Effect of policosanol on lipid levels among patients with hypercholesterolemia or combined hyperlipidemia. A randomized controlled trial. JAMA. 2006;295(19):2262–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Gong J, Qin X, Yuan F, Hu M, Chen G, Fang K, et al. Efficacy and safety of sugarcane policosanol on dyslipidemia: a meta-analysis of randomized controlled trials. Mol Nutr Food Res. 2018;62(1):1–13.CrossRefGoogle Scholar
  67. 67.
    Menendez R, Mas R, Amor AMA, Gonzalez RMA, Fernandez JC, Rodeiro I, et al. Effects of policosanol treatment on the susceptibility of low density lipoprotein (LDL) isolated from healthy volunteers to oxidative modification in vitro. J Clin Pharmacol. 2000;50(3):255–62.CrossRefGoogle Scholar
  68. 68.
    Montserrat-de la Paz S, García-Giménez M, Ángel-Martín M, Pérez-Camino M, Arche AF. Long-chain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. J Ethnopharmacol. 2014;151:131–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Ham H, Yoon SW, Kim IH, Kwak J, Lee JS, Jeong HS, et al. Protective effects of unsaponifiable matter from rice bran on oxidative damage by modulating antioxidant enzyme activities in HepG2 cells. LWT-food-Sci Technol. 2015;61(2):602–8.CrossRefGoogle Scholar
  70. 70.
    Lee JY, Choi HY, Kang YR, Kwon YI. Effects of long-term supplementation of policosanol on blood cholesterol/glucose levels and 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in a rat model fed high cholesterol diets. Food Sci Biotechnol. 2016;25(3):899–904.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Arruzazabala ML, Carbajal D, Mas R, Molina V, Valdes S, Laguna A. Cholesterol-lowering effects of policosanol in rabbits. Biol Res. 1994;27(3–4):205–8.PubMedGoogle Scholar
  72. 72.
    Wang YW, Jones PJ, Pischel I, Fairow C. Effects of policosanols and phytosterols on lipid levels and cholesterol biosynthesis in hamsters. Lipids. 2003;38(2):165–70.CrossRefPubMedGoogle Scholar
  73. 73.
    Xu Z, Evelyn F, Natalie R, Mohammed H, Moghadasian M. Dietary octacosanol reduces plasma triacylglycerol levels but not atherogenesis in apolipoprotein E–knockout mice. Nutri Rres. 2007;27(4):212–7.CrossRefGoogle Scholar
  74. 74.
    Dullens SPJ, Mensink RP, Bragt MCE, Kies AK, Plat J. Effects of emulsified policosanols with different chain lengths on cholesterol metabolism in heterozygous LDL receptor-deficient mice. J Lipid Res. 2008;49(4):790–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Murphy KJ, Saint DA, Howe PR. Lack of effect of sugar cane and sunflower seed policosanols on plasma cholesterol in rabbits. Asia Pac J Clin Nutr. 2004;13(Suppl):S69.Google Scholar
  76. 76.
    Hernandez F, Illnait J, Más R, et al. Effect of policosanol on serum lipids and lipoproteins in healthy volunteers. Curr Ther Res. 1992;51(4):568–75.Google Scholar
  77. 77.
    Torres O, Agramonte AJ, Illnait J, Más Ferreiro R, Fernández L, Fernández JC. Treatment of hypercholesterolemia in NIDDM with policosanol. Diabetes Care. 1995;18(3):393–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Valdes S, Arruzazabala ML, Fernandez L, Más R, Carbajal D, Aleman C, et al. Effect of policosanol on platelet aggregation in healthy volunteers. Int J Clin Pharmacol Res. 1996;16(2–3):67–72.PubMedGoogle Scholar
  79. 79.
    Castano G, Más R, Fernandez L, Illnait J, Gámez R, Alvarez E. Effects of policosanol 20 versus 40 mg/day in the treatment of patients with type II hypercholesterolemia: a 6-month double-blind study. Int J Clin Pharmacol Res. 2001b;21(1):43–57.PubMedGoogle Scholar
  80. 80.
    Smith JB. Prostaglandins and platelet aggregation. Acta Med Scand Suppl. 1981;651:91–9.PubMedGoogle Scholar
  81. 81.
    Arruzazabala ML, Valdes S, Más R, Carbajal D. Comparative study of policosanol, aspirin and the combination therapy policosanol-aspirin on platelet aggregation in healthy volunteers. Pharmacol Res. 1997;36(5–6):293–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Crespo N, Alvarez R, Más R, Illnait J, Fernández L, Fernández LC. Effects of policosanol on patients with non-insulindependent diabetes mellitus and hypercholesterolemia: a pilot study. Curr Ther Res Clin Exp. 1997;58(1):44–51.CrossRefGoogle Scholar
  83. 83.
    Arruzazabala ML, Más R, Molina V, Carbajal D, Mendoza S, Fernández L, et al. Effect of policosanol on platelet aggregation in type II hypercholesterolemic patients. Int J Tissue React. 1998;20(4):119–24.PubMedGoogle Scholar
  84. 84.
    Carbajal D, Arruzazabala ML, Valdes S, Más R. Effect of policosanol on platelet aggregation and serum levels of arachidonic acid metabolites in healthy volunteers. Prostaglandins Leukot Essent Fatty Acids. 1998;58(1):61–4.CrossRefPubMedGoogle Scholar
  85. 85.
    Castaño G, Más R, Fernández JC, Pontigas V, Suazo M, Fernández L. Open-label study of the efficacy, safety, and tolerability of policosanol in patients with high global coronary risk. Curr Ther Res Clin Exp. 1998;59(10):737–45.CrossRefGoogle Scholar
  86. 86.
    Ortensi G, Gladstein J, Valli H, Tesone PA. A comparative study of policosanol versus simvastatin in elderly patients with hypercholesterolemia. Curr Ther Res Clin Exp. 1997;58(6):390–401.CrossRefGoogle Scholar
  87. 87.
    Castaño G, Más R, Arruzazabala ML, Noa M, Illnait J, Fernández JC, et al. Effects of policosanol and pravastatin on lipid profile, platelet aggregation and endothelemia in older hypercholesterolemic patients. Int J Clin Pharmacol Res. 1999;29(4):105–16.Google Scholar
  88. 88.
    Marcello S, Gladstein J, Tesone P, Mas R. Effect of bezafibrate plus policosanol or placebo in patients with combined dyslipidemia: a pilot study. CTR. 2000;61(6):346–57.Google Scholar
  89. 89.
    Mirkin A, Más R, Martinto M, Boccanera R, Robertis A, Poudes R, et al. Efficacy and tolerability of policosanol in hypercholesterolemic postmenopausal women. Int J Clin Pharmacol Res. 2001;21(1):31–41.PubMedGoogle Scholar
  90. 90.
    Castaño G, Más R, Fernández L, Illnait J, Hernández E, Fernández JC, et al. A randomized, double-blind, placebo-controlled study of the efficacy and tolerability of policosanol in adolescents with type II hypercholesterolemia. CTR. 2002;63(4):286–303.Google Scholar
  91. 91.
    Castaño G, Más R, Fernández L, Gámez R, Illnait J. Effects of policosanol and lovastatin in patients with intermittent claudication: a double-blind comparative pilot study. Angiology. 2003;54(1):25–38.CrossRefPubMedGoogle Scholar
  92. 92.
    Reiner Z, Tedeschi-Reiner E, Romić Z. Effects of rice policosanol on serum lipoproteins, homocysteine, fibrinogen and C-reactive protein in hypercholesterolaemic patients. Clin Drug Investig. 2005;25(11):701–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Chen JT, Wesley R, Shamburek RD, Pucino F, Csako G. Meta-analysis of natural therapies for hyperlipidemia: plant sterols and stanols versus policosanol. Pharmacotherapy. 2005;25(2):171–83.CrossRefPubMedGoogle Scholar
  94. 94.
    Keller S, Franziska G, Gerhard J. Octacosanol administration to humans decreases neutral sterol and bile acid concentration in feces. J Lipid Res. 2008;43(2):109–15.CrossRefGoogle Scholar
  95. 95.
    Fazio S, Affuso F, Ruvolo A, Micillo F, Sacca L. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr Metab Cardiovasc Dis. 2010;20(9):656–61.CrossRefPubMedGoogle Scholar
  96. 96.
    Guardamagna O, Abello F, Baracco V, Stasiowska B, Martino F. The treatment of hypercholesterolemic children: efficacy and safety of a combination of red yeast rice extract and policosanols. Nutr Metab Cardiovasc Dis. 2011;21(6):424–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Liu S, Tan MY, Zhao SP, Rong H. Effects of policosanol on serum lipids and heme oxygenase-1 in patients with hyperlipidemia. Zhonghua Xin Xue Guan Bing Za Zhi 2012; 40(10):840–43.Google Scholar
  98. 98.
    Kim S, Yadav D, Park H, Kim J. Long-term consumption of cuban policosanol lowers central and brachial blood pressure and improves lipid profile with enhancement of lipoprotein properties in healthy Korean participants. Front Physiol. 2018;9(412):1–11.Google Scholar
  99. 99.
    Cho K, Kim S, Yadav D, Kim J, Kim J. Consumption of cuban policosanol improves blood pressure and lipid profile via enhancement of HDL functionality in healthy women subjects: randomized, double-blinded, and placebo-controlled study. Oxidative Med Cell Longev. 2018:1–15.Google Scholar
  100. 100.
    Pons P, Más R, Illnait J, Fernández J, Rodriguez M, Robaina C, et al. Efficacy and safety of policosanol in patients with primary hypercholesterolemia. Curr Ther Res. 1992;52(4):507–13.CrossRefGoogle Scholar
  101. 101.
    Aneiros E, Calderon B, Mas R, Illnait J, Fernandez L, Castano G, et al. Effect of successive dose increases of policosanol on the lipid profile and tolerability of treatment. Curr Ther Res. 1994;14(1):27–33.Google Scholar
  102. 102.
    Pons P, Rodriguez M, Más R, Illnait J, Fernández L, Robaina C, et al. One year efficacy and safety of policosanol in patients with type II hypercholesterolemia. Curr Ther Res. 1994a;55(9):1084–92.CrossRefGoogle Scholar
  103. 103.
    Pons P, Rodriquez M, Robaina C, Illnait J, Más R, Fernández L, et al. Effects of successive dose increases of policosanol on the lipid profile of patients with type II hypercholesterolemia and tolerability to treatment. Int J Clin Pharmacol Res. 1994b;14(1):27–33.PubMedGoogle Scholar
  104. 104.
    Aneiros E, Mas R, Calderon B, Illnait J, Fernandez L, Castano G, et al. Effect of policosanol in lowering cholesterol levels in patients with type II hypercholesterolemia. Curr Ther Res. 1995;56(4):176–82.CrossRefGoogle Scholar
  105. 105.
    Canetti M, Moreira M, Más R, Illnait J, Fernández L, Fernández JC, et al. A two-year study on the efficacy and tolerability of policosanol in patients with type II hyperlipoproteinaemia. Int J Clin Pharm Res. 1995;15(9):159–65.Google Scholar
  106. 106.
    Castano G, Más R, Nodarse M, et al. One-year study of the efficacy and safety of policosanol (5 mg twice daily) in the treatment of type II hypercholesterolemia. Curr Ther Res Clin Exp. 1995a;56(3):296–304.CrossRefGoogle Scholar
  107. 107.
    Castano G, Canetti M, Moreira M, Tula L, Más R, Illnait J, et al. Efficacy and tolerability of policosanol in elderly patients with type II hypercholesterolemia: a 12-month study. Curr Ther Res Clin Exp. 1995b;56(8):819–27.CrossRefGoogle Scholar
  108. 108.
    Castano G, Tula L, Canetti M, Canetti M, Morera M, Más R, et al. Effects of policosanol in hypertensive patients with type II hypercholesterolemia. Curr Ther Res Clin Exp. 1996;57(9):691–9.CrossRefGoogle Scholar
  109. 109.
    Batista J, Stusser R, Saez F, Perez B. Effect of policosanol on hyperlipidemia and coronary heart disease in middle-aged patients. A 14- month pilot study. Int J Clin Pharmacol Ther. 1996;34(3):134–7.PubMedGoogle Scholar
  110. 110.
    Más R, Castano G, Illnait J, Fernández L, Fernández J, Alemán C, et al. Effects of policosanol in patients with type II hypercholesterolemia and additional coronary risk factors. Clin Pharmacol Ther. 1999;65(4):439–47.CrossRefPubMedGoogle Scholar
  111. 111.
    Castano G, Más R, Fernandez JC, Illnait J, Fernández L, Alvarez E. Effects of policosanol in older patients with type II hypercholesterolemia and high coronary risk. J Gerontol A Biol Sci Med Sci. 2001a;56(3):M186–92.CrossRefPubMedGoogle Scholar
  112. 112.
    Zardoya R, Tula L, Castano G, Más R, Illnait J, Fernández JC, et al. Effects of policosanol on hypercholesterolemic patients with abnormal serum biochemical indicators of hepatic function. Curr Ther Res Clin Exp. 1996;57(7):568–77.CrossRefGoogle Scholar
  113. 113.
    Castano G, Más R, Fernandez L, Fernández JC, Illnait J, López LE, et al. Effects of policosanol on postmenopausal women with type II hypercholesterolemia. Gynecol Endocrinol. 2000a;14(3):187–95.CrossRefPubMedGoogle Scholar
  114. 114.
    Crespo N, Illnait J, Más R, Fernández L, Fernández J, Castaño G. Comparative study of the efficacy and tolerability of policosanol and lovastatin in patients with hypercholesterolemia and noninsulin dependent diabetes mellitus. Int J Clin Pharmacol Res. 1999;29(4):117–27.Google Scholar
  115. 115.
    Illnait J, Castano G, Más R, Fernandez JC. A comparative study on the efficacy and tolerability of policosanol and simvastatin for treating type II hypercholesterolemia. Can J Cardiol. 1997;13:342.Google Scholar
  116. 116.
    Benitez M, Romero C, Más R, Fernández L, Fernández LC. A comparative study of policosanol versus pravastatin in patients with type II hypercholesterolemia. Curr Ther Res Clin Exp. 1997;58(11):859–67.CrossRefGoogle Scholar
  117. 117.
    Pons P, Illnait J, Más R, Rodríguez M, Alemán C, Fernaández LC, et al. A comparative study of policosanol versus probucol in patients with hypercholesterolemia. Curr Ther Res Clin Exp. 1997;58(1):26–35.CrossRefGoogle Scholar
  118. 118.
    Alcocer L, Fernandez L, Compos E, Mas R. A comparative study of policosanol versus acipimox in patients with type II hypercholesterolemia. Int J Tissue React. 1999;21(3):85–92.PubMedGoogle Scholar
  119. 119.
    Castaño G, Más R, Fernández JC, Fernández L, Alvarez E, Lezcay M. Efficacy and tolerability of policosanol compared with lovasatin in patients with type II hypercholesterolemia and concomitant coronary risk factors. Curr Ther Res Clin Exp. 2000b;61(3):137–46.CrossRefGoogle Scholar
  120. 120.
    Varady KA, Wang Y, Jones P. Role of policosanols in the prevention and treatment of cardiovascular disease. Nutr Rev. 2003;61(11):376–83.CrossRefPubMedGoogle Scholar
  121. 121.
    Lee JH, Yaoyao J, Trung TT, Yuri H, Bobae K, Chunyan W, et al. Hexacosanol reduces plasma and hepatic cholesterol by activation of AMP-activated protein kinase and suppression of sterol regulatory element-binding protein-2 in HepG2 and C57BL/6J mice. Nutr Res. 2017;43:89–99.CrossRefPubMedGoogle Scholar
  122. 122.
    Li Y, Shanqin X, Maria MM, Bin Z, Xiuyun H, Bingbing J, et al. Phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011;13(4):376–88.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Alemán CL, Puig MN, Elias EC, Ortega CH, Guerra IR, Ferreiro RM, et al. Carcinogenicity of policosanol in mice: an 18-month study. Food Chem Toxicol. 1995;33(7):573–8.CrossRefPubMedGoogle Scholar
  124. 124.
    Rodeiro I, Aleman C, Noa M, Menéndez R, Más R, Hernández C, et al. Preclinical oral toxicology in rats of D-002, a natural drug with antiulcer effects. Drug Chem Toxicol. 1998;21(1):151–62.CrossRefPubMedGoogle Scholar
  125. 125.
    Soran N, Altindag O, Çakir H, Çelik H, Demirko A, Aksoy N. Assessment of paraoxonase activities in patients with knee osteoarthritis. Redox Rep. 2008;13(5):194–8.CrossRefPubMedGoogle Scholar
  126. 126.
    Lu M, Lu Q, Zhang Y, Tian G. ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity. J Biomed Res. 2011;25(4):266–73.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Youssef MYZ, Mojiminiyi OA, Abdella NA. Plasma concentrations of C-reactive protein and total homocysteine in relation to the severity and risk factors for cerebrovascular disease. Transl Res. 2007;150(3):158–63.CrossRefPubMedGoogle Scholar
  128. 128.
    Heinrich J, Assmann G. Fibrinogen and cardiovascular risk. J Cardiovasc Risk. 1995;2(3):197–205.CrossRefPubMedGoogle Scholar
  129. 129.
    Araujo JA, Min Z. FenY. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Frontiers in pharmacology. 2012;19(3):119.Google Scholar
  130. 130.
    Arruzazabala ML, Valdes S, Más R, Fernández L, Carbajal D. Effect of policosanol successive dose increases on platelet aggregation in healthy volunteers. Pharmacol Res. 1996;34:181–5.CrossRefPubMedGoogle Scholar
  131. 131.
    Singh H, Derwas N, Poulos A. Very long chain fatty acid β-oxidation by rat liver mitochondria and peroxisomes. Arch Biochem Biophys. 1987;259(2–3):382–90.CrossRefPubMedGoogle Scholar
  132. 132.
    Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes. 2014;5(4):444–70.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Ng CH, Leung KY, Huang Y, Chen ZY. Policosanol has no antioxidant activity in human low-density lipoprotein but increases excretion of bile acids in hamsters. J Agric Food Chem. 2005;53(16):6289–93.CrossRefPubMedGoogle Scholar
  134. 134.
    Dobiasova M, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FERHDL). Clin Biochem. 2001;34(7):583–8.CrossRefPubMedGoogle Scholar
  135. 135.
    Chen F, Cai T, Zhao G, Liao X, Guo L, Hu X. Optimizing conditions for the purification of crude octacosanol extract from rice bran wax by molecular 588 distillation analyzed using response surface methodology. J Food Eng. 2005;70:47–53.CrossRefGoogle Scholar
  136. 136.
    Chen F, Cai T, Zhao G, Liao X, Guo L, Hu X. Purification process of octacosanol extracts from rice bran wax by molecular distillation. J Food Eng. 2007;79:63–8.CrossRefGoogle Scholar
  137. 137.
    Prado JM, Prado GHC, Meireles MAA. Scale-up study of upercritical fluid extraction process for clove and sugarcane residue. J Supercrit Fluid. 2011;56:231–7.CrossRefGoogle Scholar
  138. 138.
    Ou S, Zhao J, Wang Y, Tian Y, Wang J. Preparation of octacosanol from filter mud produced after sugarcane juice clarification. LWT-Food Sci Technol. 2012;45:295–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monthana Weerawatanakorn
    • 1
    Email author
  • Kanyaphat Meerod
    • 1
  • Donporn Wongwaiwech
    • 1
  • Chi-Tang Ho
    • 2
  1. 1.Department of Agro-IndustryNaresuan UniversityPhitsanulokThailand
  2. 2.Department of Food ScienceRutgers UniversityNew BrunswickUSA

Personalised recommendations