Inhibitors of the p21 Activated Kinases

Kinase Inhibitor (A Minden, Section Editor)
  • 9 Downloads
Part of the following topical collections:
  1. Topical Collection on Kinase Inhibitor

Abstract

This review article provides an overview of some of the inhibitors that have been generated against the p21-activated kinases (PAKs). Immunohistopathological evaluation, gene profiling studies, and functional assays have indicated that PAKs play important roles in human diseases, particularly cancer. Many tumor samples that have been evaluated have shown overexpression or amplification of PAK genes. Furthermore, several studies have also shown that PAKs are involved in brain diseases as well as infectious diseases. Since the PAK kinases have been linked to cancer and other diseases, they are often considered to be valuable therapeutic targets. A number of PAK inhibitors are currently under study for their use in research or as therapeutic agents. In some cases, promising results have been obtained from both in vivo and in vitro studies. Studies are ongoing to assess the specificity of PAK inhibitors toward specific PAK isoforms, to determine their pharmacokinetic profiles, and to determine optimal doses. Future studies will determine which PAK inhibitors will be the most promising candidates for clinical development.

Keywords

PAKs p21 activated kinase PAK inhibitors Kinase inhibitors Cancer 

Notes

Compliance with Ethical Standards

Conflict of Interest Statement

On behalf of all authors, the corresponding author indicates that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Aboukameel A, Muqbil I, Senapedis W, Baloglu E, Landesman Y, Shacham S, et al. Novel p21-activated kinase 4 (PAK4) allosteric modulators overcome drug resistance and Stemness in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2017;16(1):76–87.  https://doi.org/10.1158/1535-7163.MCT-16-0205.CrossRefPubMedGoogle Scholar
  2. 2.
    Abu Aboud O, Chen CH, Senapedis W, Baloglu E, Argueta C, Weiss RH. Dual and specific inhibition of NAMPT and PAK4 by KPT-9274 decreases kidney Cancer growth. Mol Cancer Ther. 2016;15(9):2119–29.  https://doi.org/10.1158/1535-7163.MCT-16-0197.CrossRefPubMedGoogle Scholar
  3. 3.
    Aoki H, Yokoyama T, Fujiwara K, Tari AM, Sawaya R, Suki D, et al. Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin Cancer Res. 2007;13(22 Pt 1):6603–9.  https://doi.org/10.1158/1078-0432.CCR-07-0145. CrossRefPubMedGoogle Scholar
  4. 4.
    Arias-Romero LE, Villamar-Cruz O, Pacheco A, Kosoff R, Huang M, Muthuswamy SK, et al. A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene. 2010;29(43):5839–49. doi: onc2010318 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Azmi AS, Aboukameel A, Bao B, Sarkar FH, Philip PA, Kauffman M, et al. Selective inhibitors of nuclear export block pancreatic cancer cell proliferation and reduce tumor growth in mice. Gastroenterology. 2013;144(2):447–56.  https://doi.org/10.1053/j.gastro.2012.10.036.CrossRefPubMedGoogle Scholar
  6. 6.
    Azmi AS, Muqbil I, Wu J, Aboukameel A, Senapedis W, Baloglu E, et al. Targeting the nuclear export protein XPO1/CRM1 reverses epithelial to mesenchymal transition. Sci Rep. 2015;5:16077.  https://doi.org/10.1038/srep16077.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baek HY, Lim JW, Kim H. Interaction between the Helicobacter pylori CagA and alpha-pix in gastric epithelial AGS cells. Ann N Y Acad Sci. 2007;1096:18–23.  https://doi.org/10.1196/annals.1397.065.CrossRefPubMedGoogle Scholar
  8. 8.
    Begum A, Imoto I, Kozaki K, Tsuda H, Suzuki E, Amagasa T, et al. Identification of PAK4 as a putative target gene for amplification within 19q13.12-q13.2 in oral squamous-cell carcinoma. Cancer Sci. 2009;100(10):1908–16.  https://doi.org/10.1111/j.1349-7006.2009.01252.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Cai S, Ye Z, Wang X, Pan Y, Weng Y, Lao S, et al. Overexpression of P21-activated kinase 4 is associated with poor prognosis in non-small cell lung cancer and promotes migration and invasion. J Exp Clin Cancer Res. 2015;34:48.  https://doi.org/10.1186/s13046-015-0165-2.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-Ftesi S, et al. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther. 2008;7(11):1793–802. doi: 6840 [pii]CrossRefPubMedGoogle Scholar
  11. 11.
    Chen SY, Huang PH, Cheng HJ. Disrupted-in-schizophrenia 1-mediated axon guidance involves TRIO-RAC-PAK small GTPase pathway signaling. Proc Natl Acad Sci U S A. 2011;108(14):5861–6.  https://doi.org/10.1073/pnas.1018128108.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen H, Miao J, Li H, Wang C, Li J, Zhu Y, et al. Expression and prognostic significance of p21-activated kinase 6 in hepatocellular carcinoma. J Surg Res. 2014;189(1):81–8.  https://doi.org/10.1016/j.jss.2014.01.049.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen J, Lu H, Yan D, Cui F, Wang X, Yu F, et al. PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy. Oncotarget. 2015;6(1):355–67.  https://doi.org/10.18632/oncotarget.2803. PubMedGoogle Scholar
  14. 14.
    Crawford JJ, Lee W, Aliagas I, Mathieu S, Hoeflich KP, Zhou W, et al. Structure-guided design of group I selective p21-activated kinase inhibitors. J Med Chem. 2015;58(12):5121–36.  https://doi.org/10.1021/acs.jmedchem.5b00572.CrossRefPubMedGoogle Scholar
  15. 15.
    Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, et al. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008;15(4):322–31.  https://doi.org/10.1016/j.chembiol.2008.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dolan BM, Duron SG, Campbell DA, Vollrath B, Shankaranarayana Rao BS, Ko HY, et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc Natl Acad Sci U S A. 2013;110(14):5671–6.  https://doi.org/10.1073/pnas.1219383110.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fang ZP, Jiang BG, Gu XF, Zhao B, Ge RL, Zhang FB. P21-activated kinase 5 plays essential roles in the proliferation and tumorigenicity of human hepatocellular carcinoma. Acta Pharmacol Sin. 2014;35(1):82–8.  https://doi.org/10.1038/aps.2013.31.CrossRefPubMedGoogle Scholar
  18. 18.
    Fulciniti M, Martinez-Lopez J, Senapedis W, Oliva S, Lakshmi Bandi R, Amodio N, et al. Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood. 2017;129(16):2233–45.  https://doi.org/10.1182/blood-2016-06-724831.CrossRefPubMedGoogle Scholar
  19. 19.
    Gao C, Ma T, Pang L, Xie R. Activation of P21-activated protein kinase 2 is an independent prognostic predictor for patients with gastric cancer. Diagn Pathol. 2014;9:55.  https://doi.org/10.1186/1746-1596-9-55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kuvuri S, Lee J, et al. P21 activated Kinase-1 (Pak1) promotes prostate tumor growth and Microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. J Biochem. 2013;288:3025–35.  https://doi.org/10.1074/jbc.M112.424770.Google Scholar
  21. 21.
    Gu J, Li K, Li M, Wu X, Zhang L, Ding Q, et al. A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J. 2013;280(1):46–55.  https://doi.org/10.1111/febs.12048.CrossRefPubMedGoogle Scholar
  22. 22.
    Gu X, Wang C, Wang X, Ma G, Li Y, Cui L, et al. Efficient inhibition of human glioma development by RNA interference-mediated silencing of PAK5. Int J Biol Sci. 2015;11(2):230–7.  https://doi.org/10.7150/ijbs.9193.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Guo Q, Su N, Zhang J, Li X, Miao Z, Wang G, et al. PAK4 kinase-mediated SCG10 phosphorylation involved in gastric cancer metastasis. Oncogene. 2014;33(25):3277–87.  https://doi.org/10.1038/onc.2013.296.CrossRefPubMedGoogle Scholar
  24. 24.
    Han K, Zhou Y, Gan ZH, Qi WX, Zhang JJ, Fen T, et al. p21-activated kinase 7 is an oncogene in human osteosarcoma. Cell Biol Int. 2014;38(12):1394–402.  https://doi.org/10.1002/cbin.10351.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hao C, Li X, Song S, Guo B, Guo J, Zhang J, et al. Advances in the 1-phenanthryl-tetrahydroisoquinoline series of PAK4 inhibitors: potent agents restrain tumor cell growth and invasion. Org Biomol Chem. 2016;14(32):7676–90.  https://doi.org/10.1039/c6ob01072e.CrossRefPubMedGoogle Scholar
  26. 26.
    Hao C, Zhao F, Song HY, Guo J, Li X, Jiang X, et al. Structure-based design of 6-chloro-4-aminoquinazoline-2-carboxamide derivatives as potent and selective p21-activated kinase 4 (PAK4) inhibitors. J Med Chem. 2017;61(1):265–85.  https://doi.org/10.1021/acs.jmedchem.7b01342.CrossRefPubMedGoogle Scholar
  27. 27.
    Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, et al. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A. 2007;104(27):11489–94.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    He LF, Xu HW, Chen M, Xian ZR, Wen XF, Chen MN, et al. Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation of PI3K/AKT signaling. Oncotarget. 2017;8(11):17573–85.  https://doi.org/10.18632/oncotarget.7466. PubMedGoogle Scholar
  29. 29.
    Huang K, Chen G, Luo J, Zhang Y, Xu G. Clinicopathological and cellular signature of PAK1 in human bladder cancer. Tumour Biol. 2015;36(4):2359–68.  https://doi.org/10.1007/s13277-014-2843-7.CrossRefPubMedGoogle Scholar
  30. 30.
    Huynh N, Beutler JA, Shulkes A, Baldwin GS, He H. Glaucarubinone inhibits colorectal cancer growth by suppression of hypoxia-inducible factor 1alpha and beta-catenin via a p-21 activated kinase 1-dependent pathway. Biochim Biophys Acta. 2015;1853(1):157–65.  https://doi.org/10.1016/j.bbamcr.2014.10.013.CrossRefPubMedGoogle Scholar
  31. 31.
    Hwang VJ, Zhou X, Chen X, Trott J, Abu Aboud O, Shim K, et al. Anticystogenic activity of a small molecule PAK4 inhibitor may be a novel treatment for autosomal dominant polycystic kidney disease. Kidney Int. 2017;92(4):922–33.  https://doi.org/10.1016/j.kint.2017.03.031.CrossRefPubMedGoogle Scholar
  32. 32.
    Jagadeeshan S, Venkatraman G, Rayala SK. Targeting p21 activated kinase 1 (Pak1) to PAKup pancreatic cancer. Expert Opin Ther Targets. 2016;20(11):1283–5.  https://doi.org/10.1080/14728222.2016.1239719.CrossRefPubMedGoogle Scholar
  33. 33.
    Kalyaanamoorthy S, Barakat KH. Development of safe drugs: the hERG challenge. Med Res Rev. 2017;38(2):525–55.  https://doi.org/10.1002/med.21445.CrossRefPubMedGoogle Scholar
  34. 34.
    Kamai T, Shirataki H, Nakanishi K, Furuya N, Kambara T, Abe H, et al. Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer. 2010;10:164.  https://doi.org/10.1186/1471-2407-10-164.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Karpov AS, Amiri P, Bellamacina C, Bellance MH, Breitenstein W, Daniel D, et al. Optimization of a dibenzodiazepine hit to a potent and selective allosteric PAK1 inhibitor. ACS Med Chem Lett. 2015;6(7):776–81.  https://doi.org/10.1021/acsmedchemlett.5b00102.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Karthikeyan S, Hoti SL, Nazeer Y, Hegde HV. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways. Oncotarget. 2016;7(27):42353–73.  https://doi.org/10.18632/oncotarget.9865. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kaur R, Yuan X, Lu ML, Balk SP. Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate. 2008;68(14):1510–6.  https://doi.org/10.1002/pros.20787.CrossRefPubMedGoogle Scholar
  38. 38.
    Kesanakurti D, Chetty C, Rajasekhar Maddirela D, Gujrati M, Rao JS. Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma. Cell Death Dis. 2012;3:e445.  https://doi.org/10.1038/cddis.2012.182.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim MJ, Biag J, Fass DM, Lewis MC, Zhang Q, Fleishman M, et al. Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Mol Psychiatry. 2017;22(3):417–29.  https://doi.org/10.1038/mp.2016.98.CrossRefPubMedGoogle Scholar
  40. 40.
    King H, Nicholas NS, Wells CM. Role of p-21-activated kinases in cancer progression. Int Rev Cell Mol Biol. 2014;309:347–87.  https://doi.org/10.1016/B978-0-12-800255-1.00007-7.CrossRefPubMedGoogle Scholar
  41. 41.
    Kumar R, Li DQ. PAKs in human cancer progression: From inception to cancer therapeutics to future oncobiology. Adv Canc Res. 2016;130:137–209.  https://doi.org/10.1016/bs.acr.2016.01.002.CrossRefGoogle Scholar
  42. 42.
    Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene. 2017;605:20–31.  https://doi.org/10.1016/j.gene.2016.12.014.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee W, Crawford JJ, Aliagas I, Murray LJ, Tay S, Wang W, et al. Synthesis and evaluation of a series of 4-azaindole-containing p21-activated kinase-1 inhibitors. Bioorg Med Chem Lett. 2016;26(15):3518–24.  https://doi.org/10.1016/j.bmcl.2016.06.031.CrossRefPubMedGoogle Scholar
  44. 44.
    Li X, Wen W, Liu K, Zhu F, Malakhova M, Peng C, et al. Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J Biol Chem. 2011;286(25):22291–9. doi: M111.236596CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li D, Yao X, Zhang P. The overexpression of P21-activated kinase 5 (PAK5) promotes paclitaxel-chemoresistance of epithelial ovarian cancer. Mol Cell Biochem. 2013a;383(1–2):191–9.  https://doi.org/10.1007/s11010-013-1767-7.CrossRefPubMedGoogle Scholar
  46. 46.
    Li Z, Zou X, Xie L, Dong H, Chen Y, Liu Q, et al. Prognostic importance and therapeutic implications of PAK1, a drugable protein kinase, in gastroesophageal junction adenocarcinoma. PLoS One. 2013b;8(11):e80665.  https://doi.org/10.1371/journal.pone.0080665.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013;288(40):29105–14.  https://doi.org/10.1074/jbc.M113.510933.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu Y, Chen N, Cui X, Zheng X, Deng L, Price S, et al. The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene. 2010a;29(44):5883–94.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu RX, Wang WQ, Ye L, Bi YF, Fang H, Cui B, et al. p21-activated kinase 3 is overexpressed in thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome and participates in cell migration. Endocrine. 2010b;38(1):38–47.  https://doi.org/10.1007/s12020-010-9324-6.CrossRefPubMedGoogle Scholar
  50. 50.
    Lu W, Xia YH, Qu JJ, He YY, Li BL, Lu C, et al. p21-activated kinase 4 regulation of endometrial cancer cell migration and invasion involves the ERK1/2 pathway mediated MMP-2 secretion. Neoplasma. 2013;60(5):493–503.  https://doi.org/10.4149/neo_2013_064.CrossRefPubMedGoogle Scholar
  51. 51.
    Luo S, Mizuta H, Rubinsztein DC. p21-activated kinase 1 promotes soluble mutant huntingtin self-interaction and enhances toxicity. Hum Mol Genet. 2008;17(6):895–905.  https://doi.org/10.1093/hmg/ddm362.CrossRefPubMedGoogle Scholar
  52. 52.
    Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. Cell Logist. 2012;2(2):117–25.  https://doi.org/10.4161/cl.21602.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mak GW, Chan MM, Leong VY, Lee JM, Yau TO, Ng IO, et al. Overexpression of a novel activator of PAK4, the CDK5 kinase-associated protein CDK5RAP3, promotes hepatocellular carcinoma metastasis. Cancer Res. 2011;71(8):2949–58. doi: 0008-5472.CAN-10-4046 [pii]CrossRefPubMedGoogle Scholar
  54. 54.
    Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, et al. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc. 2008;130(47):15764–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res. 2014;28(5):656–72.  https://doi.org/10.1002/ptr.5054.CrossRefPubMedGoogle Scholar
  56. 56.
    McCarty SK, Saji M, Zhang X, Jarjoura D, Fusco A, Vasko VV, et al. Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. Endocr Relat Cancer. 2010;17(4):989–99.  https://doi.org/10.1677/ERC-10-0168.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    McCoull W, Hennessy EJ, Blades K, Chuaqui C, Dowling JE, Ferguson AD, et al. Optimization of highly kinase selective Bis-anilino pyrimidine PAK1 inhibitors. ACS Med Chem Lett. 2016;7(12):1118–23.  https://doi.org/10.1021/acsmedchemlett.6b00322.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mohammad RM, Li Y, Muqbil I, Aboukameel A, Senapedis W, Baloglu E, et al. Targeting rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation. Small GTPases. 2017;0:1–11.  https://doi.org/10.1080/21541248.2017.1329694.CrossRefGoogle Scholar
  59. 59.
    Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A. 2010;107(20):9446–51. doi: 0911863107CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ndubaku CO, Crawford JJ, Drobnick J, Aliagas I, Campbell D, Dong P, et al. Design of Selective PAK1 inhibitor G-5555: improving properties by employing an unorthodox low-pK a polar moiety. ACS Med Chem Lett. 2015;6(12):1241–6.  https://doi.org/10.1021/acsmedchemlett.5b00398.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nguyen DG, Wolff KC, Yin H, Caldwell JS, Kuhen KL. "UnPAKing" human immunodeficiency virus (HIV) replication: using small interfering RNA screening to identify novel cofactors and elucidate the role of group I PAKs in HIV infection. J Virol. 2006;80(1):130–7.  https://doi.org/10.1128/JVI.80.1.130-137.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Nguyen BC, Takahashi H, Uto Y, Shahinozzaman MD, Tawata S, Maruta H. 1,2,3-Triazolyl ester of ketorolac: a "click chemistry"-based highly potent PAK1-blocking cancer-killer. Eur J Med Chem. 2017a;126:270–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Nguyen BCQ, Yoshimura K, Kumazawa S, Tawata S, Maruta H. Frondoside a from sea cucumber and nymphaeols from Okinawa propolis: natural anti-cancer agents that selectively inhibit PAK1 in vitro. Drug Discov Ther. 2017b;11(2):110–4.CrossRefPubMedGoogle Scholar
  64. 64.
    Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A. 2011;108(17):7177–82.  https://doi.org/10.1073/pnas.1103350108.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ong CC, Jubb AM, Jakubiak D, Zhou W, Rudolph J, Haverty PM, et al. P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of National Cancer Institute. 2013;105:606–7.  https://doi.org/10.1093/jnci/djt054. CrossRefGoogle Scholar
  66. 66.
    Ong CC, Gierke S, Pitt C, Sagolla M, Cheng CK, Zhou W, et al. Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents. Breast Cancer Res. 2015;17:59.  https://doi.org/10.1186/s13058-015-0564-5.
  67. 67.
    Osman AB, Gani SM, Engh A. Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep. 2010;27:489–98.CrossRefGoogle Scholar
  68. 68.
    Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer's disease and its models. Neuroscience. 2013;251:51–65.  https://doi.org/10.1016/j.neuroscience.2012.05.050. CrossRefPubMedGoogle Scholar
  69. 69.
    Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal. 2017;10(504):eaan0852.  https://doi.org/10.1126/scisignal.aan0852.CrossRefPubMedGoogle Scholar
  70. 70.
    Rane C, Minden A. P21 activated kinases: structure, regulation, and functions. Semin in Cancer Biol. 2014;5:e28003.  https://doi.org/10.4161/sgtp.28003.Google Scholar
  71. 71.
    Rane C, Senapedis W, Baloglu E, Landesman Y, Crochiere M, Das-Gupta S, et al. A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth. Sci Rep. 2017;7:42555.  https://doi.org/10.1038/srep42555.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rosen LS, Blumenkopf TA, Breazna A, Darang S, Gallo JD, Goldman J, Wang D, Mileshkin L, and Eckhardt SG. "Phase 1, dose-escalation, safety, pharmacokinetic and pharmacodynamic study of single agent PF-03758309, an oral PAK inhibitor, in patients with advanced solid tumors." New Mol Ther. 2011. Abstract A177. doi:  https://doi.org/10.1158/1535-7163.TARG-11-A177.
  73. 73.
    Ryu BJ, Kim S, Min B, Kim KY, Lee JS, Park WJ, et al. Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor. Cancer Lett. 2014;349(1):45–50.CrossRefPubMedGoogle Scholar
  74. 74.
    Sato M, Matsuda Y, Wakai T, Kubota M, Osawa M, Fujimaki S, et al. P21-activated kinase-2 is a critical mediator of transforming growth factor-beta-induced hepatoma cell migration. J Gastroenterol Hepatol. 2013;28(6):1047–55.  https://doi.org/10.1111/jgh.12150.CrossRefPubMedGoogle Scholar
  75. 75.
    Selyunin AS, Sutton SE, Weigele BA, Reddick LE, Orchard RC, Bresson SM, et al. The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature. 2011;469(7328):107–11.  https://doi.org/10.1038/nature09593.CrossRefPubMedGoogle Scholar
  76. 76.
    Shu XR, Wu J, Sun H, Chi LQ, Wang JH. PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol. 2015;10:177.  https://doi.org/10.1186/s13000-015-0404-z.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sicard A, Semblat JP, Doerig C, Hamelin R, Moniatte M, Dorin-Semblat D, et al. Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes. Cell Microbiol. 2011;13(6):836–45.  https://doi.org/10.1111/j.1462-5822.2011.01582.x.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Siu MKY, Chan HY, Hong DSH, Wong ESY, Wong OGW, Ngan HYS, et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci U S A. 2010a;107(43):18622–7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Siu MK, Wong ES, Chan HY, Kong DS, Woo NW, Tam KF, et al. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int J Cancer. 2010b;127(1):21–31.  https://doi.org/10.1002/ijc.25005.CrossRefPubMedGoogle Scholar
  80. 80.
    Song S, Li X, Guo J, Hao C, Feng Y, Guo B, et al. Design, synthesis and biological evaluation of 1-phenanthryl-tetrahydroisoquinoline derivatives as novel p21-activated kinase 4 (PAK4) inhibitors. Organic Biomolecular Chemistry. 2015a;13(12):3803–18.CrossRefPubMedGoogle Scholar
  81. 81.
    Song B, Wang W, Zheng Y, Yang J, Xu Z. P21-activated kinase 1 and 4 were associated with colorectal cancer metastasis and infiltration. J Surg Res. 2015b;196(1):130–5.  https://doi.org/10.1016/j.jss.2015.02.035.CrossRefPubMedGoogle Scholar
  82. 82.
    Taira N, Nguyen BC, Be Tu PT, Tawata S. Effect of Okinawa propolis on PAK1 activity, Caenorhabditis elegans longevity, Melanogenesis, and growth of Cancer cells. J Agric Food Chem. 2016;64(27):5484–9.  https://doi.org/10.1021/acs.jafc.6b01785.CrossRefPubMedGoogle Scholar
  83. 83.
    Takao S, Chien W, Madan V, Lin DC, Ding LW, Sun QY, et al. Targeting the vulnerability to NAD+ depletion in B-cell acute lymphoblastic leukemia. Leukemia. 2017;32:616–25.  https://doi.org/10.1038/leu.2017.281.CrossRefPubMedGoogle Scholar
  84. 84.
    Viaud J, Peterson JR. An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol Cancer Ther. 2009;8(9):2559–65.  https://doi.org/10.1158/1535-7163.MCT-09-0102.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-activated kinase inhibitors FRAX486 and IPA3: inhibition of prostate stromal cell growth and effects on smooth muscle contraction in the human prostate. PLoS One. 2016;11(4):e0153312.  https://doi.org/10.1371/journal.pone.0153312.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Williams DS, Carroll PJ, Meggers E. Platinum complex as a nanomolar protein kinase inhibitor. Inorg Chem. 2007;46(8):2944–6.  https://doi.org/10.1021/ic062055t.CrossRefPubMedGoogle Scholar
  87. 87.
    Wong LE, Chen N, Karantza V, Minden A. The Pak4 protein kinase is required for oncogenic transformation of MDA-MB-231 breast cancer cells. Oncogene. 2013;2:1–6.Google Scholar
  88. 88.
    Yeo D, Huynh N, Beutler JA, Christophi C, Shulkes A, Baldwin GS, et al. Glaucarubinone and gemcitabine synergistically reduce pancreatic cancer growth via down-regulation of P21-activated kinases. Cancer Lett. 2014;346(2):264–72.CrossRefPubMedGoogle Scholar
  89. 89.
    Yeo D, He H, Patel O, Lowy AM, Baldwin GS, Nikfarjam M. FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine. BMC Cancer. 2016;16(24):24.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yu W, Kanaan Y, Bae YK, Gabrielson E. Chromosomal changes in aggressive breast cancers with basal-like features. Cancer Genet Cytogenet. 2009;193(1):29–37. doi: S0165–4608(09)00190–3CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci. 2005;25(13):3379–88.  https://doi.org/10.1523/JNEUROSCI.3553-04.2005.CrossRefPubMedGoogle Scholar
  92. 92.
    Zhang HJ, Siu MK, Yeung MC, Jiang LL, Mak VC, Ngan HY, et al. Overexpressed PAK4 promotes proliferation, migration and invasion of choriocarcinoma. Carcinogenesis. 2011;32(5):765–71. doi: bgr033 [pii]CrossRefPubMedGoogle Scholar
  93. 93.
    Zhang J, Wang J, Guo Q, Want Y, Zhou Y, Peng H, et al. LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells. Cancer Lett. 2012;317(1):24–32.CrossRefPubMedGoogle Scholar
  94. 94.
    Zhang J, Zhang H-Y, Wang J, You L-H, Zhou R-Z, Zhao D-M, et al. GL-1196 suppresses the proliferation and invasion of gastric cancer cells via targeting PAK4 and inhibiting PAK4-mediated signaling pathways. International Journal of Molecular Science. 2016;17(14)  https://doi.org/10.3390/ijms17040470.
  95. 95.
    Zhang HY, Zhang J, Hao CZ, Zhou Y, Wang J, Cheng MS, et al. LC-0882 targets PAK4 and inhibits PAK4-related signaling pathways to suppress the proliferation and invasion of gastric cancer cells. Am J Transl Res. 2017;9(6):2736–47.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhu Y, Xu L, An H, Liu W, Wang Z, Xu J. p21-activated kinase 1 predicts recurrence and survival in patients with non-metastatic clear cell renal cell carcinoma. Int J Urol. 2015;22(5):447–53.  https://doi.org/10.1111/iju.12715.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations