Advertisement

Current Pharmacology Reports

, Volume 3, Issue 3, pp 101–113 | Cite as

Remote Sensing Between Liver and Intestine: Importance of Microbial Metabolites

  • Zidong Donna Fu
  • Julia Yue CuiEmail author
Liver & Xenobiotic Metabolism (G Guo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Liver & Xenobiotic Metabolism

Abstract

Purpose of Review

Recent technological advancements including metagenomics sequencing and metabolomics have allowed the discovery of critical functions of gut microbiota in obesity, malnutrition, neurological disorders, asthma, and xenobiotic metabolism. Classification of the human gut microbiome into distinct “enterotypes” has been proposed to serve as a new paradigm for understanding the interplay between microbial variation and human disease phenotypes, as many organs are affected by gut microbiota modifications during the pathogenesis of diseases. Gut microbiota remotely interacts with liver and other metabolic organs of the host through various microbial metabolites that are absorbed into the systemic circulation. The present review summarizes recent literature regarding the importance of gut microbiota in modulating the physiological and pathological responses of various host organs and describes the functions of the known microbial metabolites that are involved in this remote sensing process, with a primary focus on the gut microbiota-liver axis.

Recent Findings

Under physiological conditions, gut microbiota modulates the hepatic transcriptome, proteome, and metabolome, most notably downregulating cytochrome P450 3a-mediated xenobiotic metabolism. Gut microbiome also modulates the rhythmicity in liver gene expression, likely through microbial metabolites, such as butyrate and propionate that serve as epigenetic modifiers. Additionally, the production of host hormones such as primary bile acids and glucagon-like peptide 1 is altered by gut microbiota to modify intermediary metabolism of the host.

Summary

Dysregulation of gut microbiota is implicated in various liver diseases such as alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis, cholangitis, and liver cancer. Gut microbiota modifiers such as probiotics and prebiotics are increasingly recognized as novel therapeutic modalities for liver and other types of human diseases.

Keywords

Microbial metabolites Intestine microbiome Liver diseases Bile acids Short-chain fatty acids Choline metabolites 

Notes

Acknowledgements

This work was supported by National Institutes of Health grants ES025708, GM111381, and ES019487 and the University of Washington Center for Exposures, Diseases, Genomics, and Environment (P30 ES007033), as well as the Murphy Endowment.

Compliance with Ethical Standards

Conflict of Interest

The authors of this manuscript declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Harries DJ. The influence of intestinal bacteria upon the thyroid gland. Br Med J. 1923;1(3248):553–5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Scarpello JH, Greaves M, Sladen GE. Small intestinal transit in diabetics. Br Med J. 1976;2(6046):1225–6.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351(6275).Google Scholar
  9. 9.
    Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One. 2009;4(9):e6958.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice. Mol Pharm. 2016;13(8):2691–701.PubMedCrossRefGoogle Scholar
  11. 11.
    Mani S, Boelsterli UA, Redinbo MR. Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol. 2014;54:559–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Nayak RR, Turnbaugh PJ. Mirror, mirror on the wall: which microbiomes will help heal them all? BMC Med. 2016;14:72.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Redinbo MR. The microbiota, chemical symbiosis, and human disease. J Mol Biol. 2014;426(23):3877–91.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14(5):273–87.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Klaassen CD, Cui JY. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos. 2015;43(10):1505–21.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341(6143):295–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Haiser HJ, Seim KL, Balskus EP, Turnbaugh PJ. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 2014;5(2):233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, et al. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015;22(9):1238–49.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? Biofilms and Microbiomes. 2016;2:16003.Google Scholar
  20. 20.
    Toda T, Ohi K, Kudo T, Yoshida T, Ikarashi N, Ito K, et al. Ciprofloxacin suppresses Cyp3a in mouse liver by reducing lithocholic acid-producing intestinal flora. Drug Metab Pharmacokinet. 2009;24(3):201–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Toda T, Ohi K, Kudo T, Yoshida T, Ikarashi N, Ito K, et al. Antibiotics suppress Cyp3a in the mouse liver by reducing lithocholic acid-producing intestinal flora. Yakugaku Zasshi. 2009;129(5):601–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Selwyn FP, Cheng SL, Bammler TK, Prasad B, Vrana M, Klaassen C, et al. Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol Sci. 2015;147(1):84–103.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Selwyn FP, Cui JY, Klaassen CD. RNA-Seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab Dispos. 2015;43(10):1572–80.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos. 2016;44(2):262–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yoshitane H, Ozaki H, Terajima H, Du NH, Suzuki Y, Fujimori T, et al. CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol Cell Biol. 2014;34(10):1776–87.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Liang X, Bultman SJ. Ticking in place for the microbiome to message out. Cell Metab. 2016;24(6):775–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17(5):681–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    •• Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H, Jaitin DA, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016;167(6):1495–510 e12. This reference showed the importance of gut micriobiota in regulating the diurnal rhythm of liver transcriptome.Google Scholar
  29. 29.
    Usami M, Miyoshi M, Yamashita H. Gut microbiota and host metabolism in liver cirrhosis. World J Gastroenterol. 2015;21(41):11597–608.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Xie G, Zhong W, Li H, Li Q, Qiu Y, Zheng X, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J. 2013;27(9):3583–93.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Philips CA, Pande A, Shasthry SM, Jamwal KD, Khillan V, Chandel SS, et al. Healthy donor fecal microbiota transplantation in steroid ineligible severe alcoholic hepatitis—a pilot study. Clin Gastroenterol Hepatol. 2016.Google Scholar
  32. 32.
    Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2016.Google Scholar
  33. 33.
    Gabbi C, Bertolotti M, Anzivino C, Macchioni D, Del Puppo M, Ricchi M, et al. Effects of bile duct ligation and cholic acid treatment on fatty liver in two rat models of non-alcoholic fatty liver disease. Dig Liver Dis. 2012;44(12):1018–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Quintero P, Pizarro M, Solis N, Arab JP, Padilla O, Riquelme A, et al. Bile acid supplementation improves established liver steatosis in obese mice independently of glucagon-like peptide-1 secretion. J Physiol Biochem. 2014;70(3):667–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Cho EJ, Yoon JH, Kwak MS, Jang ES, Lee JH, Yu SJ, et al. Tauroursodeoxycholic acid attenuates progression of steatohepatitis in mice fed a methionine-choline-deficient diet. Dig Dis Sci. 2014;59(7):1461–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Pathil A, Mueller J, Warth A, Chamulitrat W, Stremmel W. Ursodeoxycholyl lysophosphatidylethanolamide improves steatosis and inflammation in murine models of nonalcoholic fatty liver disease. Hepatology. 2012;55(5):1369–78.PubMedCrossRefGoogle Scholar
  37. 37.
    Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 2012;56(1):118–29.PubMedCrossRefGoogle Scholar
  38. 38.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 2013;58(5):949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    • Tabibian JH, O'Hara SP, Trussoni CE, Tietz PS, Splinter PL, Mounajjed T, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2016;63(1):185–96. This reference showed the role of microbiota in primary sclerosing cholangitis.Google Scholar
  41. 41.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101.PubMedCrossRefGoogle Scholar
  42. 42.
    Ray K. Gut microbiota: obesity-induced microbial metabolite promotes HCC. Nat Rev Gastroenterol Hepatol. 2013;10(8):442.PubMedCrossRefGoogle Scholar
  43. 43.
    Li G, Kong B, Zhu Y, Zhan L, Williams JA, Tawfik O, et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol Appl Pharmacol. 2013;272(2):299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016.Google Scholar
  46. 46.
    Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat Inflamm. 2014;2014:162021.Google Scholar
  47. 47.
    Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.CrossRefGoogle Scholar
  49. 49.
    Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol. 2015;1(3):275–84.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–38.PubMedCrossRefGoogle Scholar
  53. 53.
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–81.PubMedCrossRefGoogle Scholar
  55. 55.
    •• Rasmussen MK, Balaguer P, Ekstrand B, Daujat-Chavanieu M, Gerbal-Chaloin S. Skatole (3-methylindole) is a partial aryl hydrocarbon receptor agonist and induces CYP1A1/2 and CYP1B1 expression in primary human hepatocytes. PLoS One. 2016;11(5):e0154629. This reference revealed the novel role of indole-derivatives in liver.Google Scholar
  56. 56.
    Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Volynets V, Kuper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci. 2012;57(7):1932–41.PubMedCrossRefGoogle Scholar
  58. 58.
    You M, Crabb DW. Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol. 2004;34(1):39–43.PubMedCrossRefGoogle Scholar
  59. 59.
    Garcia-Villafranca J, Guillen A, Castro J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie. 2008;90(3):460–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther. 2004;310(1):417–24.PubMedCrossRefGoogle Scholar
  61. 61.
    Rao RK, Seth A, Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G881–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Alisi A, Manco M, Devito R, Piemonte F, Nobili V. Endotoxin and plasminogen activator inhibitor-1 serum levels associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr. 2010;50(6):645–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877–87.PubMedCrossRefGoogle Scholar
  64. 64.
    Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47(4):571–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139(1):323–34 e7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJ, et al. Regulation of human epithelial tight junction proteins by lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):G851–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Ruiz AG, Casafont F, Crespo J, Cayon A, Mayorga M, Estebanez A, et al. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg. 2007;17(10):1374–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Konigsrainer A, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138(8):1452–5.PubMedGoogle Scholar
  69. 69.
    Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66(4):948–83.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fu ZD, Csanaky IL, Klaassen CD. Gender-divergent profile of bile acid homeostasis during aging of mice. PLoS One. 2012;7(3):e32551.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology. 2012;56(3):1034–43.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fu ZD, Cui JY, Klaassen CD. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J Lipid Res. 2014;55(12):2576–86.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cui JY, Aleksunes LM, Tanaka Y, Fu ZD, Guo Y, Guo GL, et al. Bile acids via FXR initiate the expression of major transporters involved in the enterohepatic circulation of bile acids in newborn mice. Am J Physiol Gastrointest Liver Physiol. 2012;302(9):G979–96.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fu ZD, Klaassen CD. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicol Appl Pharmacol. 2013;273(3):680–90.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fu ZD, Cui JY, Klaassen CD. The role of Sirt 1 in bile acid regulation during calorie restriction in mice. PLoS One. 2015;10(9):e0138307.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Visschers RG, Luyer MD, Schaap FG, Olde Damink SW, Soeters PB. The gut-liver axis. Curr Opin Clin Nutr Metab Care. 2013;16(5):576–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD. Importance of large intestine in regulating bile acids and glucagon-like peptide-1 in germ-free mice. Drug Metab Dispos. 2015;43(10):1544–56.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4523–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Begley M, Gahan CG, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29(4):625–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhu Y, Liu H, Zhang M, Guo GL. Fatty liver diseases, bile acids, and FXR. Acta Pharm Sin B. 2016;6(5):409–12.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3(1):5.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mouzaki M, Bandsma R. Targeting the gut microbiota for the treatment of non-alcoholic fatty liver disease. Curr Drug Targets. 2015;16(12):1324–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol. 2016;311(6):G1018–G36.PubMedCrossRefGoogle Scholar
  84. 84.
    Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13(5):517–26.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Miyoshi M, Sakaki H, Usami M, Iizuka N, Shuno K, Aoyama M, et al. Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharide-induced liver injury in rats. Clin Nutr. 2011;30(2):252–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Bloemen JG, Olde Damink SW, Venema K, Buurman WA, Jalan R, Dejong CH. Short chain fatty acids exchange: is the cirrhotic, dysfunctional liver still able to clear them? Clin Nutr. 2010;29(3):365–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Usami M, Miyoshi M, Kanbara Y, Aoyama M, Sakaki H, Shuno K, et al. Analysis of fecal microbiota, organic acids and plasma lipids in hepatic cancer patients with or without liver cirrhosis. Clin Nutr. 2013;32(3):444–51.PubMedCrossRefGoogle Scholar
  90. 90.
    Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hubbard TD, Murray IA, Bisson WH, Lahoti TS, Gowda K, Amin SG, et al. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci Rep. 2015;5:12689.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Murray IA, Nichols RG, Zhang L, Patterson AD, Perdew GH. Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice. Sci Rep. 2016;6:33969.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–83.PubMedCrossRefGoogle Scholar
  96. 96.
    Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35.PubMedCrossRefGoogle Scholar
  97. 97.
    Wichmann A, Allahyar A, Greiner TU, Plovier H, Lunden GO, Larsson T, et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe. 2013;14(5):582–90.PubMedCrossRefGoogle Scholar
  98. 98.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Maqsood R, Stone TW. The gut-brain Axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41(11):2819–35.PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang X, Hou HT, Wang J, Liu XC, Yang Q, He GW. Plasma proteomic study in pulmonary arterial hypertension associated with congenital heart diseases. Sci Rep. 2016;6:36541.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4:2384.PubMedGoogle Scholar
  102. 102.
    Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.PubMedCrossRefGoogle Scholar
  103. 103.
    Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113(47):E7554–E63.PubMedCrossRefGoogle Scholar
  106. 106.
    Kohlgruber AC, Donado CA, LaMarche NM, Brenner MB, Brennan PJ. Activation strategies for invariant natural killer T cells. Immunogenetics. 2016;68(8):649–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53(1):96–105.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol. 2012;303(1):G32–41.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol. 2008;42(8):675–82.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146(6):1513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wong VW, Tse CH, Lam TT, Wong GL, Chim AM, Chu WC, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS One. 2013;8(4):e62885.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wong VW, Won GL, Chim AM, Chu WC, Yeung DK, Li KC, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol. 2013;12(2):256–62.PubMedGoogle Scholar
  113. 113.
    Bauer TM, Schwacha H, Steinbruckner B, Brinkmann FE, Ditzen AK, Aponte JJ, et al. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol. 2002;97(9):2364–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Chen Y, Yang F, Lu H, Wang B, Lei D, Wang Y, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64.PubMedCrossRefGoogle Scholar
  116. 116.
    Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A. 2015;112(7):2175–80.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    •• Ren YD, Ye ZS, Yang LZ, Jin LX, Wei WJ, Deng YY, et al. Fecal microbiota transplantation induces HBeAg clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology. 2016. This reference reported microbiota transplant as an effective HBV therapy. Google Scholar
  118. 118.
    Schrumpf E, Kummen M, Valestrand L, Greiner TU, Holm K, Arulampalam V, et al. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. J Hepatol. 2016.Google Scholar
  119. 119.
    Kummen M, Holm K, Anmarkrud JA, Nygard S, Vesterhus M, Hoivik ML, et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut. 2016.Google Scholar
  120. 120.
    Sabino J, Vieira-Silva S, Machiels K, Joossens M, Falony G, Ballet V, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 2016;65(10):1681–9.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Torres J, Bao X, Goel A, Colombel JF, Pekow J, Jabri B, et al. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2016;43(7):790–801.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D, et al. Rethinking “enterotypes”. Cell Host Microbe. 2014;16(4):433–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R. The mind-body-microbial continuum. Dialogues Clin Neurosci. 2011;13(1):55–62.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes. 2014;5(1):3–17.PubMedCrossRefGoogle Scholar
  125. 125.
    Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC, et al. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015;29(2):552–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63.PubMedCrossRefGoogle Scholar
  127. 127.
    Johnson CC, Ownby DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 2017;179:60–70.PubMedCrossRefGoogle Scholar
  128. 128.
    Kepert I, Fonseca J, Muller C, Milger K, Hochwind K, Kostric M, et al. d-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol. 2016.Google Scholar
  129. 129.
    Semerano L, Julia C, Aitisha O, Boissier MC. Nutrition and chronic inflammatory rheumatic disease. Joint Bone Spine. s2016.Google Scholar
  130. 130.
    Emal D, Rampanelli E, Stroo I, Butter LM, Teske GJ, Claessen N, et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2016.Google Scholar
  131. 131.
    Anand G, Zarrinpar A, Loomba R. Targeting dysbiosis for the treatment of liver disease. Semin Liver Dis. 2016;36(1):37–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations