Current Pharmacology Reports

, Volume 3, Issue 2, pp 68–76 | Cite as

Single-Cell Transcriptome Analysis of Neural Stem Cells

  • Ying Li
  • Jeremy Anderson
  • Kelvin Y. Kwan
  • Li CaiEmail author
Bioinformatics and Stem Cell (R Hart, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Bioinformatics and Stem Cell


Neural stem cells (NSCs) in the adult central nervous system play essential roles in both normal homeostasis and repair of damaged tissue after injury. The study of adult NSCs is hampered by the heterogeneous NSC population. In this review, we describe recent progresses in using single-cell RNA-sequencing (scRNA-seq) technique for the investigation of NSCs. The first part of this review focuses on the scRNA-seq techniques and bioinformatic analysis. The second part emphasizes the applications of scRNA-seq analysis in NSC research. Finally, we discuss the challenges and future directions of scRNA-seq technique for both basic research and regenerative medicine.


Neural stem cells Single-cell sequencing Transcriptome Bioinformatics Homeostasis Injury and diseases 



The work was supported in part by grants from the New Jersey Commission on Spinal Cord Research and Busch Biomedical Research.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Achim K, Pettit JB, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol. 2015;33(5):503–9. doi: 10.1038/nbt.3209.CrossRefPubMedGoogle Scholar
  2. 2.
    Adams DL, Zhu P, Makarova OV, Martin SS, Charpentier M, Chumsri S, et al. The systematic study of circulating tumor cell isolation using lithographic microfilters. RSC Adv. 2014;9:4334–42. doi: 10.1039/C3RA46839A.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT. The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol. 2008;73:357–65. doi: 10.1101/sqb.2008.73.019.CrossRefPubMedGoogle Scholar
  4. 4.
    Beckervordersandforth R, Tripathi P, Ninkovic J, Bayam E, Lepier A, Stempfhuber B, et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell. 2010;7(6):744–58. doi: 10.1016/j.stem.2010.11.017.CrossRefPubMedGoogle Scholar
  5. 5.
    Bendall SC, Davis KL, Amir el AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157(3):714–25. doi: 10.1016/j.cell.2014.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bifari F, Decimo I, Pino A, Llorens-Bobadilla E, Zhao S, Lange C, et al. Neurogenic radial glia-like cells in meninges migrate and differentiate into functionally integrated neurons in the neonatal cortex. Cell Stem Cell. 2016; doi: 10.1016/j.stem.2016.10.020.PubMedGoogle Scholar
  7. 7.
    Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95. doi: 10.1016/j.stem.2015.09.003.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013;10(11):1093–5. doi: 10.1038/nmeth.2645.CrossRefPubMedGoogle Scholar
  9. 9.
    Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015;112(51):15672–7. doi: 10.1073/pnas.1520760112.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Choi JH, Ogunniyi AO, Du M, Du M, Kretschmann M, Eberhardt J, et al. Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol Prog. 2010;26(3):888–95. doi: 10.1002/btpr.374.CrossRefPubMedGoogle Scholar
  11. 11.
    DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28(11):1530–2. doi: 10.1093/bioinformatics/bts196.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11(5):339–50. doi: 10.1038/nrn2822.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Doetsch F. The glial identity of neural stem cells. Nat Neurosci. 2003;6(11):1127–34. doi: 10.1038/nn1144.CrossRefPubMedGoogle Scholar
  14. 14.
    du Verle DA, Yotsukura S, Nomura S, Aburatani H, Tsuda K. CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data. BMC Bioinformatics. 2016;17(1):363. doi: 10.1186/s12859-016-1175-6.CrossRefGoogle Scholar
  15. 15.
    Dulin JN, Antunes-Martins A, Chandran V, Costigan M, Lerch JK, Willis DE, et al. Transcriptomic approaches to neural repair. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2015;35(41):13860–7. doi: 10.1523/JNEUROSCI.2599-15.2015.CrossRefGoogle Scholar
  16. 16.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc. 2006;1(2):586–603. doi: 10.1038/nprot.2006.85.CrossRefPubMedGoogle Scholar
  17. 17.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8(6):469–77. doi: 10.1038/nmeth.1613.CrossRefPubMedGoogle Scholar
  19. 19.
    Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17(3):175–88. doi: 10.1038/nrg.2015.16.CrossRefPubMedGoogle Scholar
  20. 20.
    Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163(4):799–810. doi: 10.1016/j.cell.2015.10.039.CrossRefPubMedGoogle Scholar
  21. 21.
    Hu G, Huang K, Hu Y, Du G, Xue Z, Zhu X, et al. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons. Scientific reports. 2016;6:31851. doi: 10.1038/srep31851.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17:29. doi: 10.1186/s13059-016-0888-1.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ishii Y, Matsumoto Y, Watanabe R, Elmi M, Fujimori T, Nissen J, et al. Characterization of neuroprogenitor cells expressing the PDGF beta-receptor within the subventricular zone of postnatal mice. Mol Cell Neurosci. 2008;37(3):507–18. doi: 10.1016/j.mcn.2007.11.006.CrossRefPubMedGoogle Scholar
  24. 24.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11(2):163–6. doi: 10.1038/nmeth.2772.CrossRefPubMedGoogle Scholar
  25. 25.
    Juliá M, Telenti A, Rausell A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics. 2015;31(20):3380–2. doi: 10.1093/bioinformatics/btv368.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Leng N, Chu L-F, Barry C, Li Y, Choi J, Li X, et al. Oscope identifies oscillatory genes in unsynchronized single cell RNA-seq experiments. Nat Methods. 2015;12(10):947–50. doi: 10.1038/nmeth.3549.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. doi: 10.1093/bioinformatics/btp698.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Linnarsson S. Sequencing single cells reveals sequential stem cell states. Cell Stem Cell. 2015;17(3):251–2. doi: 10.1016/j.stem.2015.08.016.CrossRefPubMedGoogle Scholar
  30. 30.
    Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179–93. doi: 10.1038/nrn1867.CrossRefPubMedGoogle Scholar
  31. 31.
    Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17(3):329–40. doi: 10.1016/j.stem.2015.07.002.CrossRefPubMedGoogle Scholar
  32. 32.
    Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell. 2015;161(5):1175–86. doi: 10.1016/j.cell.2015.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14. doi: 10.1016/j.cell.2015.05.002.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702. doi: 10.1016/j.neuron.2011.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. doi: 10.1038/nature09807.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell. 2016;18(5):591–6. doi: 10.1016/j.stem.2016.03.012.CrossRefPubMedGoogle Scholar
  37. 37.
    Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P, Bates M, et al. Rapid spread of Zika virus in the Americas—implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic games. Int J Infect Dis. 2016;44:11–5. doi: 10.1016/j.ijid.2016.02.001.CrossRefPubMedGoogle Scholar
  38. 38.
    Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–8. doi: 10.1038/nmeth.2639.CrossRefPubMedGoogle Scholar
  39. 39.
    Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171–81. doi: 10.1038/nprot.2014.006.CrossRefPubMedGoogle Scholar
  40. 40.
    Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85–97. doi: 10.1038/nrg3868.CrossRefPubMedGoogle Scholar
  41. 41.
    Ross HH, Ambrosio F, Trumbower RD, Reier PJ, Behrman AL, Wolf SL. Neural stem cell therapy and rehabilitation in the central nervous system: emerging partnerships. Phys Ther. 2016;96(5):734–42. doi: 10.2522/ptj.20150063.CrossRefPubMedGoogle Scholar
  42. 42.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502. doi: 10.1038/nbt.3192.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015;17(3):360–72. doi: 10.1016/j.stem.2015.07.013.CrossRefPubMedGoogle Scholar
  44. 44.
    Sun J, Sun J, Ming GL, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. Eur J Neurosci. 2011;33(6):1087–93. doi: 10.1111/j.1460-9568.2011.07607.x.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. doi: 10.1038/nmeth.1315.CrossRefPubMedGoogle Scholar
  46. 46.
    Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587–90. doi: 10.1016/j.stem.2016.02.016.CrossRefPubMedGoogle Scholar
  47. 47.
    Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539(7628):309–13. doi: 10.1038/nature20123.CrossRefPubMedGoogle Scholar
  48. 48.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6. doi: 10.1038/nbt.2859.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, et al. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature. 2016;534(7607):391–5. doi: 10.1038/nature18323.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58(4):598–609. doi: 10.1016/j.molcel.2015.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5. doi: 10.1093/bioinformatics/bts356.CrossRefPubMedGoogle Scholar
  52. 52.
    Welberg L. Learning and memory: neurogenesis erases existing memories. Nat Rev Neurosci. 2014;15(7):428. doi: 10.1038/nrn3768.CrossRefPubMedGoogle Scholar
  53. 53.
    Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, Ihry RJ, et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cell Stem Cell. 2016;19(6):703–8. doi: 10.1016/j.stem.2016.11.011.CrossRefPubMedGoogle Scholar
  54. 54.
    Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593–7. doi: 10.1038/nature12364.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 2011;192(3):373–382. doi: 10.1083/jcb.201010021.
  56. 56.
    Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 2012;30(8):777–82.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ying Li
    • 1
  • Jeremy Anderson
    • 1
  • Kelvin Y. Kwan
    • 2
  • Li Cai
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  2. 2.Department of Cell Biology & Neuroscience, Keck Center for Collaborative Research and Stem Cell Research CenterRutgers UniversityPiscatawayUSA

Personalised recommendations