Advertisement

Potential Determinants of Gastrointestinal Dysfunction in Autism Spectrum Disorders

  • Anya E. ShindlerEmail author
  • Elisa L. Hill-Yardin
  • Steve Petrovski
  • Anne C. Cunningham
  • Naomi Bishop
  • Ashley E. Franks
Review Paper

Abstract

Gastrointestinal (GI) dysfunction is a common comorbidity of autism spectrum disorders (ASD) and is associated with increased severity of characteristic autism-associated symptoms. However, the underlying biological mechanisms for GI dysfunction symptoms in children with ASD are unknown. This review explores potential explanations for these symptoms including altered enteric microbiota, impaired intestinal permeability, changes in immune homeostasis, and genetic factors such as single nucleotide polymorphisms. It was shown that genetic factors not only influence the development of altered enteric microbiota and impaired intestinal permeability, but also are a strong, independent contributor to GI dysfunction in ASD patients.

Keywords

Autism spectrum disorder Gastrointestinal dysfunction Genetics Microbiota Intestinal permeability Immune system 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11(1), 22.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad, R., Sorrell, M., Batra, S., Dhawan, P., & Singh, A. (2017). Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunology, 10(2), 307.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alabbas, S. Y., Begun, J., Florin, T. H., & Oancea, I. (2018). The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clinical & translational immunology, 7(4), e1017.CrossRefGoogle Scholar
  4. Al-Sadi, R., Ye, D., Boivin, M., Guo, S., Hashimi, M., Ereifej, L., & Ma, T. Y. (2014). Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One, 9(3), e85345.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Al-Sadi, R., Guo, S., Ye, D., Rawat, M., & Ma, T. Y. (2016). TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway. The American Journal of Pathology, 186(5), 1151–1165.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J., & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arrieta, M.-C., Madsen, K., Doyle, J., & Meddings, J. B. (2008). Reducing small intestinal permeability attenuates colitis in the IL-10 gene deficient mouse. Gut.Google Scholar
  8. Ashwood, P., & Wakefield, A. J. (2006). Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. Journal of Neuroimmunology, 173(1–2), 126–134.PubMedCrossRefGoogle Scholar
  9. Australian Institute of Health and Welfare. (2017). Autism in Australia. Retrieved from https://www.aihw.gov.au/reports/disability/autism-in-australia/contents/autism. Accessed 1 December 2017
  10. Autism Ontario. (2017). Thinking about autism spectrum disorder, on Autism Ontario. Retrieved from https://www.autismontario.com/client/aso/ao.nsf/web/Info+about+ASD?OpenDocument Accessed 1 December 2017
  11. Bachmann, C. J., Gerste, B., & Hoffmann, F. (2016). Diagnoses of autism spectrum disorders in Germany: time trends in administrative prevalence and diagnostic stability. Autism, 1362361316673977.Google Scholar
  12. Bennet, S. M., Böhn, L., Störsrud, S., Liljebo, T., Collin, L., Lindfors, P., Törnblom, H., Öhman, L., & Simrén, M. (2018). Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut, 67(5), 872–881.PubMedCrossRefGoogle Scholar
  13. Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., & Hua, K. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences, 107(44), 18933–18938.CrossRefGoogle Scholar
  14. Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.-D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterology, 14(1), 189.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Black, C., Kaye, J. A., & Jick, H. (2002). Relation of childhood gastrointestinal disorders to autism: nested case-control study using data from the UK General Practice Research Database. BMJ, 325(7361), 419–421.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16(9), 551.PubMedCrossRefGoogle Scholar
  17. Buie, T., Campbell, D. B., Fuchs, G. J., Furuta, G. T., Levy, J., VandeWater, J., Whitaker, A. H., Atkins, D., Bauman, M. L., & Beaudet, A. L. (2010). Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics, 125(Supplement 1), S1–S18.CrossRefGoogle Scholar
  18. Capaldo, C. T., & Nusrat, A. (2009). Cytokine regulation of tight junctions. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(4), 864–871.CrossRefGoogle Scholar
  19. Careaga, M., Rogers, S., Hansen, R. L., Amaral, D. G., Van de Water, J., & Ashwood, P. (2017). Immune endophenotypes in children with autism spectrum disorder. Biological Psychiatry, 81(5), 434–441.PubMedCrossRefGoogle Scholar
  20. Careaga, M., Taylor, S. L., Chang, C., Chiang, A., Ku, K. M., Berman, R. F., Van de Water, J. A., & Bauman, M. D. (2018). Variability in PolyIC induced immune response: implications for preclinical maternal immune activation models. Journal of Neuroimmunology, 323, 87–93.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cayrol, C., & Girard, J.-P. (2014). IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Current Opinion in Immunology, 31, 31–37.PubMedCrossRefGoogle Scholar
  22. Center for Disease Control and Prevention. (2016). Autism spectrum disorder (ASD) data and statistics. Retrieved from https://www.cdc.gov/ncbddd/autism/data.html
  23. Cepek, K. L., Shaw, S. K., Parker, C. M., Russell, G. J., Morrow, J. S., Rimm, D. L., & Brenner, M. B. (1994). Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature, 372(6502), 190.PubMedCrossRefGoogle Scholar
  24. Claesson, M. J., Clooney, A. G., & O’toole, P. W. (2017). A clinician’s guide to microbiome analysis. Nature Reviews Gastroenterology and Hepatology, 14(10), 585.PubMedCrossRefGoogle Scholar
  25. Clarke, G., Quigley, E. M., Cryan, J. F., & Dinan, T. G. (2009). Irritable bowel syndrome: towards biomarker identification. Trends in Molecular Medicine, 15(10), 478–489.PubMedCrossRefGoogle Scholar
  26. Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R., Shanahan, F., Dinan, T. G., & Cryan, J. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18(6), 666.PubMedCrossRefGoogle Scholar
  27. Croen, L. A., Najjar, D. V., Ray, G. T., Lotspeich, L., & Bernal, P. (2006). A comparison of health care utilization and costs of children with and without autism spectrum disorders in a large group-model health plan. Pediatrics, 118(4), e1203–e1211.PubMedCrossRefGoogle Scholar
  28. Cummings, C. M., Caporino, N. E., & Kendall, P. C. (2014). Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychological Bulletin, 140(3), 816.PubMedCrossRefGoogle Scholar
  29. Cunningham, K. E., & Turner, J. R. (2012). Myosin light chain kinase: pulling the strings of epithelial tight junction function. Annals of the New York Academy of Sciences, 1258(1), 34–42.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Daraei, A., Salehi, R., & Mohamadhashem, F. (2012). PTGS2 (COX2)− 765G> C gene polymorphism and risk of sporadic colorectal cancer in Iranian population. Molecular Biology Reports, 39(5), 5219–5224.PubMedCrossRefPubMedCentralGoogle Scholar
  31. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., & Fischbach, M. A. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.PubMedPubMedCentralGoogle Scholar
  32. de Magistris, L., Familiari, V., Pascotto, A., Sapone, A., Frolli, A., Iardino, P., Carteni, M., De Rosa, M., Francavilla, R., & Riegler, G. (2010). Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. Journal of Pediatric Gastroenterology and Nutrition, 51(4), 418–424.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Devkota, S., Wang, Y., Musch, M. W., Leone, V., Fehlner-Peach, H., Nadimpalli, A., Antonopoulos, D. A., Jabri, B., & Chang, E. B. (2012). Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/−mice. Nature, 487(7405), 104–108.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dinan, T. G., & Cryan, J. F. (2017). The microbiome-gut-brain axis in health and disease. Gastroenterology Clinics, 46(1), 77–89.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dissanayake, C., Bui, Q., Bulhak-Paterson, D., Huggins, R., & Loesch, D. Z. (2009). Behavioural and cognitive phenotypes in idiopathic autism versus autism associated with fragile X syndrome. Journal of Child Psychology and Psychiatry, 50(3), 290–299.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 14(1), 20–32.CrossRefGoogle Scholar
  37. Edelson, S. M. (2016). Autism Treatment Evaluation Chekclist (ATEC). Retrieved from https://www.autism.com/ind_atec Accessed 1 September 2018.
  38. Elsabbagh, M., Divan, G., Koh, Y. J., Kim, Y. S., Kauchali, S., Marcín, C., Montiel-Nava, C., Patel, V., Paula, C. S., & Wang, C. (2012). Global prevalence of autism and other pervasive developmental disorders. Autism Research, 5(3), 160–179.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Esnafoglu, E., Cırrık, S., Ayyıldız, S. N., Erdil, A., Ertürk, E. Y., Daglı, A., & Noyan, T. (2017). Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. The Journal of Pediatrics, 188, 240–244.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Falcón, B. S., López, M. B., Muñoz, B. M., Sánchez, A. Á., & Rey, E. (2016). Fecal impaction: a systematic review of its medical complications. BMC Geriatrics, 16(1), 4.CrossRefGoogle Scholar
  41. Fasano, A. (2012). Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences, 1258(1), 25–33.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Finegold, S. M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M.-L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., & Marlowe, E. M. (2002). Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases, 35(Supplement_1), S6–S16.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Finegold, S. M., Summanen, P. H., Downes, J., Corbett, K., & Komoriya, T. (2017). Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe.Google Scholar
  44. Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J. S., Humphries, S., & Woo, P. (1998). The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. Journal of Clinical Investigation, 102(7), 1369.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Flemer, B., Lynch, D. B., Brown, J. M., Jeffery, I. B., Ryan, F. J., Claesson, M. J., O’riordain, M., Shanahan, F., & O’toole, P. W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633–643.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., & White, B. A. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology, 6(2), 121.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fulceri, F., Morelli, M., Santocchi, E., Cena, H., Del Bianco, T., Narzisi, A., Calderoni, S., & Muratori, F. (2016). Gastrointestinal symptoms and behavioral problems in preschoolers with autism spectrum disorder. Digestive and Liver Disease, 48(3), 248–254.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gershon, M. (2004). Serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility. Alimentary Pharmacology & Therapeutics, 20(s7), 3–14.CrossRefGoogle Scholar
  49. Gershon, M. D. (2013). 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Current Opinion in Endocrinology, Diabetes, and Obesity, 20(1), 14.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gorfu, G., Rivera-Nieves, J., & Ley, K. (2009). Role of β7 integrins in intestinal lymphocyte homing and retention. Current Molecular Medicine, 9(7), 836–850.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gorrindo, P., Williams, K. C., Lee, E. B., Walker, L. S., McGrew, S. G., & Levitt, P. (2012). Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. Autism Research, 5(2), 101–108.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gröne, J., Weber, B., Staub, E., Heinze, M., Klaman, I., Pilarsky, C., Hermann, K., Castanos-Velez, E., Röpcke, S., & Mann, B. (2007). Differential expression of genes encoding tight junction proteins in colorectal cancer: frequent dysregulation of claudin-1,-8 and-12. International Journal of Colorectal Disease, 22(6), 651–659.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hugenholtz, F., & de Vos, W. M. (2018). Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences, 75(1), 149–160.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Irish Society for Autism. (2017). What is autism (autism spectrum disorders)? Retrieved from https://autism.ie/what-is-autism/ Accessed 1 December 2017.
  55. Jeste, D., Lieberman, J. A., Fassler, D., & Peele, R. (2013). Diagnostic and statistical manuel of mental disorders DSM-5 (5th ed.). Washington, DC: American Psychiatric Publishing.Google Scholar
  56. Johnson, C. R., Handen, B. L., Zimmer, M., Sacco, K., & Turner, K. (2011). Effects of gluten free/casein free diet in young children with autism: a pilot study. Journal of Developmental and Physical Disabilities, 23(3), 213–225.CrossRefGoogle Scholar
  57. Kang, V., Wagner, G. C., & Ming, X. (2014). Gastrointestinal dysfunction in children with autism spectrum disorders. Autism Research, 7(4), 501–506.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kawamura, Y., Takahashi, O., & Ishii, T. (2008). Reevaluating the incidence of pervasive developmental disorders: impact of elevated rates of detection through implementation of an integrated system of screening in Toyota, Japan. Psychiatry and Clinical Neurosciences, 62(2), 152–159.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Keszthelyi, D., Troost, F., Jonkers, D., Eijk, H., Lindsey, P., Dekker, J., Buurman, W. A., & Masclee, A. (2014). Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 40(4), 392–402.CrossRefGoogle Scholar
  60. Krakowiak, P., Goines, P. E., Tancredi, D. J., Ashwood, P., Hansen, R. L., Hertz-Picciotto, I., & Van de Water, J. (2017). Neonatal cytokine profiles associated with autism spectrum disorder. Biological Psychiatry, 81(5), 442–451.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kushak, R. I., Buie, T. M., Murray, K. F., Newburg, D. S., Chen, C., Nestoridi, E., & Winter, H. S. (2016). Evaluation of intestinal function in children with autism and gastrointestinal symptoms. Journal of Pediatric Gastroenterology and Nutrition, 62(5), 687–691.CrossRefGoogle Scholar
  62. Landi, S., Moreno, V., Gioia-Patricola, L., Guino, E., Navarro, M., de Oca, J., Capella, G., & Canzian, F. (2003). Association of common polymorphisms in inflammatory genes interleukin (IL) 6, IL8, tumor necrosis factor α, NFKB1, and peroxisome proliferator-activated receptor γ with colorectal cancer. Cancer Research, 63(13), 3560–3566.PubMedPubMedCentralGoogle Scholar
  63. Lázaro, C. P., Pondé, M. P., & Rodrigues, L. E. (2016). Opioid peptides and gastrointestinal symptoms in autism spectrum disorders. Revista Brasileira de Psiquiatria, 38(3), 243–246.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lee, S. H. (2015). Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intestinal Research, 13(1), 11–18.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Li, E., Hamm, C. M., Gulati, A. S., Sartor, R. B., Chen, H., Wu, X., Zhang, T., Rohlf, F. J., Zhu, W., & Gu, C. (2012). Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One, 7(6), e26284.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li, L., Xiong, L., Yao, J., Zhuang, X., Zhang, S., Yu, Q., Xiao, Y., Cui, Y., & Chen, M. (2016). Increased small intestinal permeability and RNA expression profiles of mucosa from terminal ileum in patients with diarrhoea-predominant irritable bowel syndrome. Digestive and Liver Disease, 48(8), 880–887.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu, F., Wei, W.-Q., Cormier, R. T., Zhang, S.-T., Qiao, Y.-L., Li, X.-Q., Zhu, S.-T., Zhai, Y.-C., Peng, X.-X., & Yan, Y.-X. (2013). Association of single nucleotide polymorphisms in the prostaglandin-endoperoxide synthase 2 (PTGS2) and phospholipase A2 group IIA (PLA2G2A) genes with susceptibility to esophageal squamous cell carcinoma. Asian Pacific Journal of Cancer Prevention: APJCP, 15(4), 1797–1802.CrossRefGoogle Scholar
  68. Liu, S., da Cunha, A. P., Rezende, R. M., Cialic, R., Wei, Z., Bry, L., Comstock, L. E., Gandhi, R., & Weiner, H. L. (2016). The host shapes the gut microbiota via fecal microRNA. Cell Host & Microbe, 19(1), 32–43.CrossRefGoogle Scholar
  69. Luna, R. A., Oezguen, N., Balderas, M., Venkatachalam, A., Runge, J. K., Versalovic, J., Veenstra-VanderWeele, J., Anderson, G. M., Savidge, T., & Williams, K. C. (2017). Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cellular and Molecular Gastroenterology and Hepatology, 3(2), 218–230.PubMedCrossRefPubMedCentralGoogle Scholar
  70. MacFabe, D. F. (2012). Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microbial Ecology in Health and Disease, 23(1), 19260.Google Scholar
  71. Malinen, E., Rinttilä, T., Kajander, K., Mättö, J., Kassinen, A., Krogius, L., Saarela, M., Korpela, R., & Palva, A. (2005). Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. The American Journal of Gastroenterology, 100(2), 373.PubMedCrossRefGoogle Scholar
  72. Margolis, K. G., & Gershon, M. D. (2016). Enteric neuronal regulation of intestinal inflammation. Trends in Neurosciences, 39(9), 614–624.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Margolis, K. G., Li, Z., Stevanovic, K., Saurman, V., Israelyan, N., Anderson, G. M., Snyder, I., Veenstra-VanderWeele, J., Blakely, R. D., & Gershon, M. D. (2016). Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. The Journal of Clinical Investigation, 126(6), 2221–2235.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Martìn-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., & Villa, A. (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. The Journal of Cell Biology, 142(1), 117–127.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mayer, E. A., & Tillisch, K. (2011). The brain-gut axis in abdominal pain syndromes. Annual review of medicine, 62, 381–396.Google Scholar
  76. McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics, 133(5), 872–883.PubMedCrossRefGoogle Scholar
  77. Menke, V., Pot, R. G., Moons, L. M., van Zoest, K. P., Hansen, B., van Dekken, H., Siersema, P. D., Kusters, J. G., & Kuipers, E. J. (2012). Functional single-nucleotide polymorphism of epidermal growth factor is associated with the development of Barrett’s esophagus and esophageal adenocarcinoma. Journal of Human Genetics, 57(1), 26–32.PubMedCrossRefGoogle Scholar
  78. Ming, X., Brimacombe, M., Chaaban, J., Zimmerman-Bier, B., & Wagner, G. C. (2008). Autism spectrum disorders: concurrent clinical disorders. Journal of Child Neurology, 23(1), 6–13.CrossRefGoogle Scholar
  79. Mujagic, Z., Ludidi, S., Keszthelyi, D., Hesselink, M., Kruimel, J., Lenaerts, K., Hanssen, N. M. J., Conchillo, J. M., Jonkers, D. M. A. E., & Masclee, A. (2014). Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Alimentary Pharmacology & Therapeutics, 40(3), 288–297.CrossRefGoogle Scholar
  80. Muniz, L. R., Knosp, C., & Yeretssian, G. (2012). Intestinal antimicrobial peptides during homeostasis, infection, and disease. Frontiers in Immunology, 3, 310.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nezami, B. G., & Srinivasan, S. (2010). Enteric nervous system in the small intestine: pathophysiology and clinical implications. Current Gastroenterology Reports, 12(5), 358–365.PubMedPubMedCentralCrossRefGoogle Scholar
  82. NHS Digital UK (2012). Estimating the prevalence of autism spectrum conditions in adults - extending the 2007 adult psychiatric morbidity survey. Retrieved from https://digital.nhs.uk/data-and-information/publications/statistical/estimating-the-prevalence-of-autism-spectrum-conditions-in-adults/estimating-the-prevalence-of-autism-spectrum-conditions-in-adults-extending-the-2007-adult-psychiatric-morbidity-survey Accessed 1 December 2017.
  83. Nikolov, R. N., Bearss, K. E., Lettinga, J., Erickson, C., Rodowski, M., Aman, M. G., McCracken, J. T., McDougle, C. J., Tierney, E., & Vitiello, B. (2009). Gastrointestinal symptoms in a sample of children with pervasive developmental disorders. Journal of Autism and Developmental Disorders, 39(3), 405–413.PubMedCrossRefGoogle Scholar
  84. O’Mahony, S., Clarke, G., Borre, Y., Dinan, T., & Cryan, J. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, 32–48.CrossRefGoogle Scholar
  85. Panksepp, J. (1979). A neurochemical theory of autism. Trends in Neurosciences, 2, 174–177.CrossRefGoogle Scholar
  86. Park, Y., Won, S., Nam, M., Chung, J.-H., & Kwack, K. (2014). Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population. Journal of Child Neurology, 29(12), NP207–NP211.PubMedCrossRefGoogle Scholar
  87. Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54(10), 987–991.PubMedCrossRefGoogle Scholar
  88. Peters, B., Williams, K. C., Gorrindo, P., Rosenberg, D., Lee, E. B., Levitt, P., & Veenstra-VanderWeele, J. (2014). Rigid–compulsive behaviors are associated with mixed bowel symptoms in autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(6), 1425–1432.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Piche, T., Barbara, G., Aubert, P., Des Varannes, S. B., Dainese, R., Nano, J.-L., Cremon, C., Stanghellini, V., De Giorgio, R., & Galmiche, J. P. (2009). Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut, 58(2), 196–201.PubMedCrossRefGoogle Scholar
  90. Porter, N. T., & Martens, E. C. (2017). The critical roles of polysaccharides in gut microbial ecology and physiology. Annual Review of Microbiology, 71, 349–369.PubMedCrossRefGoogle Scholar
  91. Quintana, F. J., Basso, A. S., Iglesias, A. H., Korn, T., Farez, M. F., Bettelli, E., Caccamo, M., Oukka, M., & Weiner, H. L. (2008). Control of T reg and T H 17 cell differentiation by the aryl hydrocarbon receptor. Nature, 453(7191), 65.PubMedCrossRefGoogle Scholar
  92. Rose, D. R., Yang, H., Serena, G., Sturgeon, C., Ma, B., Careaga, M., Hughes, H. K., Angkustsiri, K., Rose, M., & Hertz-Picciotto, I. (2018). Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain, Behavior, and Immunity, 70, 354–368.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Saulnier, D. M., Riehle, K., Mistretta, T. A., Diaz, M. A., Mandal, D., Raza, S., Weidler, E. M., Qin, X., Coarfa, C., & Milosavljevic, A. (2011). Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology, 141(5), 1782–1791.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schmidt, R. J., Hansen, R. L., Hartiala, J., Allayee, H., Schmidt, L. C., Tancredi, D. J., Tassone, F., & Hertz-Picciotto, I. (2011). Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology (Cambridge, Mass.), 22(4), 476.CrossRefGoogle Scholar
  95. Schmidt, S. V., Nino-Castro, A. C., & Schultze, J. L. (2012). Regulatory dendritic cells: there is more than just immune activation. Frontiers in Immunology, 3, 274.PubMedPubMedCentralGoogle Scholar
  96. Sheridan, B. S., & Lefrançois, L. (2010). Intraepithelial lymphocytes: to serve and protect. Current Gastroenterology Reports, 12(6), 513–521.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shukla, R., Ghoshal, U., Dhole, T. N., & Ghoshal, U. C. (2015). Fecal microbiota in patients with irritable bowel syndrome compared with healthy controls using real-time polymerase chain reaction: an evidence of dysbiosis. Digestive Diseases and Sciences, 60(10), 2953–2962.PubMedCrossRefGoogle Scholar
  98. Song, Y., Liu, C., & Finegold, S. M. (2004). Real-time PCR quantitation of clostridia in feces of autistic children. Applied and Environmental Microbiology, 70(11), 6459–6465.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Spiller, R. (2008). Serotonin and GI clinical disorders. Neuropharmacology, 55(6), 1072–1080.PubMedCrossRefGoogle Scholar
  100. Stappenbeck, T. S., & Virgin, H. W. (2016). Accounting for reciprocal host–microbiome interactions in experimental science. Nature, 534(7606), 191–199.PubMedCrossRefGoogle Scholar
  101. Suzuki, T., Yoshinaga, N., & Tanabe, S. (2011). Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. Journal of Biological Chemistry, 286(36), 31263–31271.PubMedCrossRefGoogle Scholar
  102. Suzuki, H., Nishizawa, T., Tani, K., Yamazaki, Y., Tamura, A., Ishitani, R., Dohmae, N., Tsukita, S., Nureki, O., & Fujiyoshi, Y. (2014). Crystal structure of a claudin provides insight into the architecture of tight junctions. Science, 344(6181), 304–307.PubMedCrossRefGoogle Scholar
  103. Syvänen, A.-C. (2001). Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2(12), 930–942.PubMedCrossRefGoogle Scholar
  104. Tanner, K., Case-Smith, J., Nahikian-Nelms, M., Ratliff-Schaub, K., Spees, C., & Darragh, A. R. (2015). Behavioral and physiological factors associated with selective eating in children with autism spectrum disorder. American Journal of Occupational Therapy, 69(6), 6906180030p6906180031–6906180030p6906180038.CrossRefGoogle Scholar
  105. Thulasi, V., Steer, R. A., Monteiro, I. M., & Ming, X. (2018). Overall severities of gastrointestinal symptoms in pediatric outpatients with and without autism spectrum disorder. Autism, 1362361318757564.Google Scholar
  106. Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tsilioni, I., & Theoharides, T. C. (2018). Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1β. Journal of Neuroinflammation, 15(1), 239.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799–809.PubMedCrossRefGoogle Scholar
  109. Valicenti-McDermott, M., McVICAR, K., Rapin, I., Wershil, B. K., Cohen, H., & Shinnar, S. (2006). Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. Journal of Developmental & Behavioral Pediatrics, 27(2), S128–S136.CrossRefGoogle Scholar
  110. Van Wijk, F., & Cheroutre, H. (2010). Mucosal T cells in gut homeostasis and inflammation. Expert Review of Clinical Immunology, 6(4), 559–566.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Veldhoen, M., Hirota, K., Westendorf, A. M., Buer, J., Dumoutier, L., Renauld, J.-C., & Stockinger, B. (2008). The aryl hydrocarbon receptor links T H 17-cell-mediated autoimmunity to environmental toxins. Nature, 453(7191), 106.PubMedCrossRefGoogle Scholar
  112. Verma, D., Chakraborti, B., Karmakar, A., Bandyopadhyay, T., Singh, A. S., Sinha, S., Chatterjee, A., Ghosh, S., Mohanakumar, K., & Mukhopadhyay, K. (2014). Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 50, 11–20.PubMedCrossRefGoogle Scholar
  113. Visser, J., Rozing, J., Sapone, A., Lammers, K., & Fasano, A. (2009). Tight junctions, intestinal permeability, and autoimmunity. Annals of the New York Academy of Sciences, 1165(1), 195–205.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81(5), 411–423.PubMedCrossRefGoogle Scholar
  115. Wan, Y., Hu, Q., Li, T., Jiang, L., Du, Y., Feng, L., Wong, J. C.-M., & Li, C. (2013). Prevalence of autism spectrum disorders among children in China: a systematic review. Shanghai Archives of Psychiatry, 25(2), 70.PubMedPubMedCentralGoogle Scholar
  116. Wapenaar, M. C., Monsuur, A., van Bodegraven, A., Weersma, R. K., Bevova, M., Linskens, R., . . . Dijkstra, G. (2007). Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for celiac disease and ulcerative colitis. Gut.Google Scholar
  117. Weiner, H. L., da Cunha, A. P., Quintana, F., & Wu, H. (2011). Oral tolerance. Immunological Reviews, 241(1), 241–259.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wheeler, M. A., Rothhammer, V., & Quintana, F. J. (2017). Control of immune-mediated pathology via the aryl hydrocarbon receptor. Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.R116.767723.PubMedCrossRefGoogle Scholar
  119. Whitehouse, A. J. (2013). Complementary and alternative medicine for autism spectrum disorders: rationale, safety and efficacy. Journal of Paediatrics and Child Health, 49(9).PubMedCrossRefGoogle Scholar
  120. Williams, B. L., Hornig, M., Buie, T., Bauman, M. L., Paik, M. C., Wick, I., Bennett, A., Jabado, O., Hirschberg, D. L., & Lipkin, W. I. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 6(9), e24585.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Williams, B. L., Hornig, M., Parekh, T., & Lipkin, W. I. (2012). Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 3(1), e00261–e00211.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wolburg, H., & Lippoldt, A. (2002). Tight junctions of the blood–brain barrier: development, composition and regulation. Vascular Pharmacology, 38(6), 323–337.PubMedCrossRefGoogle Scholar
  123. Xu, G., Strathearn, L., Liu, B., & Bao, W. (2018). Prevalence of autism spectrum disorder among US children and adolescents, 2014-2016. Jama, 319(1), 81–82.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., & Blumberg, S. J. (2015). Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014. National Health Interview Survey.Google Scholar
  125. Zenewicz, L. A., Yin, X., Wang, G., Elinav, E., Hao, L., Zhao, L., & Flavell, R. A. (2013). IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic. The Journal of Immunology, 190(10), 5306–5312.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology, Anatomy and Microbiology, School of Life SciencesLa Trobe UniversityMelbourneAustralia
  2. 2.School of Health and Biomedical SciencesRMIT UniversityMelbourneAustralia
  3. 3.PAPRSB Institute of Health SciencesUniversiti Brunei DarussalamBandar Seri BegawanBrunei
  4. 4.Centre for Future LandscapesLa Trobe UniversityMelbourneAustralia

Personalised recommendations