Methods Investigating How Individuals with Autism Spectrum Disorder Spontaneously Attend to Social Events

Review Paper

Abstract

It has been recognized that individuals with autism spectrum disorder (ASD) show discrepancies between their abstract capacities to solve social cognition dilemmas and their ability to spontaneously decipher live social interactions. In the last 15 years, different paradigms have been designed to investigate how individuals with ASD grasp information when emerged in naturalistic or live social interactions. The present paper reviews three categories of such paradigms that focus on (1) verbal questionnaires and interviews while participants view a naturalistic social scenario, (2) eye tracking methods while participants view naturalistic settings, and (3) simulation of social interactions using virtual reality or robotics. This paper discusses the advantages and limitations of each paradigm and suggests a new concept for combining these paradigms.

Keywords

Autism spectrum disorders Social cognition Attention Eye-tracking Virtual reality 

References

  1. Abell, F., Happe, F., & Frith, U. (2000). Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. Cognitive Development, 15(1), 1–16.CrossRefGoogle Scholar
  2. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.CrossRefPubMedGoogle Scholar
  3. Baron-Cohen, S. (1997). Mindblindness: an essay on autism and theory of mind. MIT Press.Google Scholar
  4. Baron-Cohen, S. (2009). Autism: The Empathizing-Systemizing (E-S) Theory. Annals of the New York Academy of Sciences, 1156(1), 68–80.Google Scholar
  5. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”?. Cognition, 21(1), 37–46.Google Scholar
  6. Baron-Cohen, S., Campbell, R., Karmiloff-Smith, A., Grant, J., & Walker, J. (1995). Are children with autism blind to the mentalistic significance of the eyes? British Journal of Developmental Psychology, 13(4), 379–398.CrossRefGoogle Scholar
  7. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403(6767), 309–312.CrossRefPubMedGoogle Scholar
  8. Bernardini, S., Porayska-Pomsta, K., & Smith, T. J. (2014). ECHOES: an intelligent serious game for fostering social communication in children with autism. Information Sciences, 264, 41–60.CrossRefGoogle Scholar
  9. Billard, A., & Grollman, D. (2012). Imitation learning in robots. Encyclopedia of the Sciences of Learning (pp. 1494–1496). Springer.Google Scholar
  10. Bird, G., Press, C., & Richardson, D. C. (2011). The role of alexithymia in reduced eye-fixation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 41(11), 1556–1564.CrossRefPubMedGoogle Scholar
  11. Birmingham, E., Bischof, W. F., & Kingstone, A. (2008). Gaze selection in complex social scenes. Visual Cognition, 16(2–3), 341–355.CrossRefGoogle Scholar
  12. Boraston, Z., & Blakemore, S. (2007). The application of eye-tracking technology in the study of autism. The Journal of Physiology, 581(3), 893–898.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chawarska, K., Macari, S., & Shic, F. (2012). Context modulates attention to social scenes in toddlers with autism. Journal of Child Psychology and Psychiatry, 53(8), 903–913.CrossRefPubMedGoogle Scholar
  14. Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74(3), 195–203.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chita-Tegmark, M. (2016a). Attention allocation in ASD: a review and meta-analysis of eye-tracking studies. Review Journal of Autism and Developmental Disorders, 1–15.Google Scholar
  16. Chita-Tegmark, M. (2016a). Social attention in ASD: a review and meta-analysis of eye-tracking studies. Research in Developmental Disabilities, 48, 79–93.CrossRefPubMedGoogle Scholar
  17. Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H., & . . . Davidson, R. J. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8(4), 519–526.Google Scholar
  18. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.CrossRefPubMedGoogle Scholar
  19. Doherty-Sneddon, G., & Phelps, F. G. (2005). Gaze aversion: a response to cognitive or social difficulty? Memory & Cognition, 33(4), 727–733.CrossRefGoogle Scholar
  20. Doherty-Sneddon, G., Riby, D. M., & Whittle, L. (2012). Gaze aversion as a cognitive load management strategy in autism spectrum disorder and Williams syndrome. Journal of Child Psychology and Psychiatry, 53(4), 420–430.CrossRefPubMedGoogle Scholar
  21. Dratsch, T., Schwartz, C., Yanev, K., Schilbach, L., Vogeley, K., & Bente, G. (2013). Getting a grip on social gaze: control over others’ gaze helps gaze detection in high-functioning autism. Journal of Autism and Developmental Disorders, 43(2), 286–300.CrossRefPubMedGoogle Scholar
  22. Dziobek, I., Fleck, S., Kalbe, E., Rogers, K., Hassenstab, J., Brand, M., & . . . Convit, A. (2006). Introducing MASC: a movie for the assessment of social cognition. Journal of Autism and Developmental Disorders, 36(5), 623–636.Google Scholar
  23. Ellsworth, P. C., Carlsmith, J. M., & Henson, A. (1972). The stare as a stimulus to flight in human subjects: a series of field experiments. Journal of Personality and Social Psychology, 21(3), 302.CrossRefPubMedGoogle Scholar
  24. Elsabbagh, M., Bedford, R., Senju, A., Charman, T., Pickles, A., Johnson, M. H., & Team, B. A. S. I. S. (2014). What you see is what you get: contextual modulation of face scanning in typical and atypical development. Social Cognitive and Affective Neuroscience, 9(4), 538–543. doi:10.1093/scan/nst012.CrossRefPubMedGoogle Scholar
  25. Falck-Ytter, T. (2010). Young children with autism spectrum disorder use predictive eye movements in action observation. Biology Letters, 6(3), 375–378. doi:10.1098/rsbl.2009.0897.CrossRefPubMedGoogle Scholar
  26. Falck-Ytter, T., Fernell, E., Hedvall, Å. L., von Hofsten, C., & Gillberg, C. (2012). Gaze performance in children with autism spectrum disorder when observing communicative actions. Journal of Autism and Developmental Disorders, 42(10), 2236–2245.CrossRefPubMedGoogle Scholar
  27. Falck-Ytter, T., von Hofsten, C., Gillberg, C., & Fernell, E. (2013). Visualization and analysis of eye movement data from children with typical and atypical development. Journal of Autism and Developmental Disorders, 43(10), 2249–2258.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Frith, U. (1989). Autism: explaining the enigma.Google Scholar
  29. Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534.Google Scholar
  30. Frith, C. D., & Frith, U. (2012). Mechanisms of social cognition. Annual Review of Psychology, 63, 287–313.CrossRefPubMedGoogle Scholar
  31. Gallese, V. (2009). Mirror neurons, embodied simulation, and the neural basis of social identification. Psychoanalytic Dialogues, 19(5), 519–536.CrossRefGoogle Scholar
  32. Gallotti, M., & Frith, C. D. (2013). Social cognition in the we-mode. Trends in Cognitive Sciences, 17(4), 160–165.CrossRefPubMedGoogle Scholar
  33. Gardner, H. (2008). The mind’s new science: a history of the cognitive revolution. Basic Books.Google Scholar
  34. Gervais, H., Belin, P., Boddaert, N., Leboyer, M., Coez, A., Sfaello, I., & . . . Zilbovicius, M. (2004). Abnormal cortical voice processing in autism. Nature Neuroscience, 7(8), 801–802.Google Scholar
  35. Golan, O., & Baron-Cohen, S. (2006). Systemizing empathy: teaching adults with Asperger syndrome or high-functioning autism to recognize complex emotions using interactive multimedia. Development and Psychopathology, 18(2), 591–617.CrossRefPubMedGoogle Scholar
  36. Grynszpan, O., & Nadel, J. (2015). An eye-tracking method to reveal the link between gazing patterns and pragmatic abilities in high functioning autism spectrum disorders. Frontiers in Human Neuroscience, 8, 1067.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Grynszpan, O., Nadel, J., Martin, J., Simonin, J., Bailleul, P., Wang, Y., & . . . Constant, J. (2012). Self-monitoring of gaze in high functioning autism. Journal of Autism and Developmental Disorders, 42(8), 1642–1650.Google Scholar
  38. Guillon, Q., Hadjikhani, N., Baduel, S., & Rogé, B. (2014). Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neuroscience & Biobehavioral Reviews, 42, 279–297.CrossRefGoogle Scholar
  39. Henderson, J. M., Williams, C. C., & Falk, R. J. (2005). Eye movements are functional during face learning. Memory & Cognition, 33(1), 98–106.CrossRefGoogle Scholar
  40. Hobson, R. P., Ouston, J., & Lee, A. (1988). What’s in a face? The case of autism. British Journal of Psychology, 79(4), 441–453.CrossRefPubMedGoogle Scholar
  41. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: a comprehensive guide to methods and measures. OUP Oxford.Google Scholar
  42. Hosozawa, M., Tanaka, K., Shimizu, T., Nakano, T., & Kitazawa, S. (2012). How children with specific language impairment view social situations: an eye tracking study. Pediatrics, 129(6), e1453–e1460. doi:10.1542/peds.2011-2278.CrossRefPubMedGoogle Scholar
  43. Itier, R. J., Alain, C., Sedore, K., & McIntosh, A. R. (2007). Early face processing specificity: it’s in the eyes! Journal of Cognitive Neuroscience, 19(11), 1815–1826.CrossRefPubMedGoogle Scholar
  44. Jones, W., Carr, K., & Klin, A. (2008). Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Archives of General Psychiatry, 65(8), 946–954.CrossRefPubMedGoogle Scholar
  45. Kajopoulos, J., Wong, A. H. Y., Yuen, A. W. C., Dung, T. A., Kee, T. Y., & Wykowska, A. (2015). Robot-assisted training of joint attention skills in children diagnosed with autism. Social robotics (pp. 296–305). Springer.Google Scholar
  46. Kandalaft, M. R., Didehbani, N., Krawczyk, D. C., Allen, T. T., & Chapman, S. B. (2013). Virtual reality social cognition training for young adults with high-functioning autism. Journal of Autism and Developmental Disorders, 43(1), 34–44.CrossRefPubMedGoogle Scholar
  47. Klin, A. (2000). Attributing social meaning to ambiguous visual stimuli in higher-functioning autism and Asperger syndrome: the social attribution task. Journal of Child Psychology and Psychiatry, 41(07), 831–846.CrossRefPubMedGoogle Scholar
  48. Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002a). Defining and quantifying the social phenotype in autism. American Journal of Psychiatry, 159(6), 895–908.CrossRefPubMedGoogle Scholar
  49. Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002b). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59(9), 809–816.CrossRefPubMedGoogle Scholar
  50. Klin, A., Jones, W., Schultz, R., & Volkmar, F. (2003). The enactive mind, or from actions to cognition: lessons from autism. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1430), 345–360. doi:10.1098/rstb.2002.1202.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459(7244), 257–261.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kozima, H., Nakagawa, C., & Yasuda, Y. (2007). Children–robot interaction: a pilot study in autism therapy. Progress in Brain Research, 164, 385–400.CrossRefPubMedGoogle Scholar
  53. Kuhn, G., Kourkoulou, A., & Leekam, S. R. (2010). How magic changes our expectations about autism. Psychological Science, 21(10), 1487–1493. doi:10.1177/0956797610383435.CrossRefPubMedGoogle Scholar
  54. Linden Lab. (2009). Second Life. Available at http://secondlife.com/.Google Scholar
  55. Lönnqvist, L., Loukusa, S., Hurtig, T., Mäkinen, L., Siipo, A., Väyrynen, E., & … Ebeling, H. (2016). How young adults with autism spectrum disorder watch and interpret pragmatically complex scenes. The Quarterly Journal of Experimental Psychology.Google Scholar
  56. McCullough, J. P., Jr., Lord, B. D., Martin, A. M., Conley, K. A., Schramm, E., & Klein, D. N. (2011). The significant other history: an interpersonal-emotional history procedure used with the early-onset chronically depressed patient. American Journal of Psychotherapy, 65(3), 225–248.PubMedGoogle Scholar
  57. Mitchell, P., Parsons, S., & Leonard, A. (2007). Using virtual environments for teaching social understanding to 6 adolescents with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 37(3), 589–600.CrossRefPubMedGoogle Scholar
  58. Nakano, T., Tanaka, K., Endo, Y., Yamane, Y., Yamamoto, T., Nakano, Y., & . . . Kitazawa, S. (2010). Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour. Proceedings of the Royal Society of London B: Biological Sciences, rspb20100587.Google Scholar
  59. Newbutt, N., Sung, C., Kuo, H., Leahy, M. J., Lin, C., & Tong, B. (2016). Brief report: a pilot study of the use of a virtual reality headset in autism populations. Journal of Autism and Developmental Disorders, 1–11.Google Scholar
  60. Norbury, C. F., & Bishop, D. V. (2009). Narrative skills of children with communication impairments. International Journal of Language & Communication Disorders. Google Scholar
  61. Norbury, C. F., Brock, J., Cragg, L., Einav, S., Griffiths, H., & Nation, K. (2009). Eye-movement patterns are associated with communicative competence in autistic spectrum disorders. Journal of Child Psychology and Psychiatry, 50(7), 834–842.CrossRefPubMedGoogle Scholar
  62. Noris, B., Nadel, J., Barker, M., Hadjikhani, N., & Billard, A. (2012). Investigating gaze of children with ASD in naturalistic settings. PLoS One, 7(9), e44144.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Papagiannopoulou, E. A., Chitty, K. M., Hermens, D. F., Hickie, I. B., & Lagopoulos, J. (2014). A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. Social Neuroscience, 9(6), 610–632.PubMedGoogle Scholar
  64. Pelphrey, K. A., Sasson, N. J., Reznick, J. S., Paul, G., Goldman, B. D., & Piven, J. (2002). Visual scanning of faces in autism. Journal of Autism and Developmental Disorders, 32(4), 249–261.CrossRefPubMedGoogle Scholar
  65. Riby, D., & Hancock, P. J. (2009). Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism. Journal of Intellectual Disability Research, 53(2), 169–181.CrossRefPubMedGoogle Scholar
  66. Rice, K., Moriuchi, J. M., Jones, W., & Klin, A. (2012). Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children. Journal of the American Academy of Child and Adolescent Psychiatry, 51(3), 238–248.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Rietveld, E. (2012). Bodily intentionality and social affordances in context. Consciousness in Interaction. The Role of the Natural and Social Context in Shaping Consciousness, 207–226.Google Scholar
  68. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature Clinical Practice Neurology, 5(1), 24–34.CrossRefPubMedGoogle Scholar
  69. Robins, B., & Dautenhahn, K. (2004). Interacting with robots: can we encourage social interaction skills in children with autism? ACM SIGACCESS Accessibility and Computing, 80, 6–10.CrossRefGoogle Scholar
  70. Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications (p. 71–78). New York: ACM. doi: 10.1145/355017.355028.
  71. Schilbach, L. (2014). On the relationship of online and offline social cognition. Frontiers in Human Neuroscience, 8, 278.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schilbach, L., Wohlschlaeger, A. M., Kraemer, N. C., Newen, A., Shah, N. J., Fink, G. R., & Vogeley, K. (2006). Being with virtual others: neural correlates of social interaction. Neuropsychologia, 44(5), 718–730.CrossRefPubMedGoogle Scholar
  73. Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(04), 393–414.CrossRefPubMedGoogle Scholar
  74. Senju, A. (2012). Spontaneous theory of mind and its absence in autism spectrum disorders. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 18(2), 108–113. doi:10.1177/1073858410397208.CrossRefGoogle Scholar
  75. Senju, A., & Johnson, M. H. (2009). Atypical eye contact in autism: models, mechanisms and development. Neuroscience & Biobehavioral Reviews, 33(8), 1204–1214.CrossRefGoogle Scholar
  76. Senju, A., Southgate, V., White, S., & Frith, U. (2009). Mindblind eyes: an absence of spontaneous theory of mind in Asperger syndrome. Science (New York, N.Y.), 325(5942), 883–885. doi:10.1126/science.1176170.CrossRefGoogle Scholar
  77. Shic, F., Bradshaw, J., Klin, A., Scassellati, B., & Chawarska, K. (2011). Limited activity monitoring in toddlers with autism spectrum disorder. Brain Research, 1380, 246–254.CrossRefPubMedGoogle Scholar
  78. Skarratt, P. A., Cole, G. G., & Kuhn, G. (2012). Visual cognition during real social interaction. Frontiers in Human Neuroscience, 6.Google Scholar
  79. Speer, L. L., Cook, A. E., McMahon, W. M., & Clark, E. (2007). Face processing in children with autism: effects of stimulus contents and type. Autism: The International Journal of Research and Practice, 11(3), 265–277.CrossRefGoogle Scholar
  80. Spunt, R. P., & Lieberman, M. D. (2013). The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychological Science, 24(1), 80–86. doi:10.1177/0956797612450884.CrossRefPubMedGoogle Scholar
  81. Tartaro, A., & Cassell, J. (2006). Using virtual peer technology as an intervention for children with autism. In Towards universal usability: designing computer interfaces for diverse user populations (pp. 231–262). New York: Wiley.Google Scholar
  82. Teunisse, J., & de Gelder, B. (2003). Face processing in adolescents with autistic disorder: the inversion and composite effects. Brain and Cognition, 52(3), 285–294.CrossRefPubMedGoogle Scholar
  83. Trepagnier, C. Y., Sebrechts, M. M., Finkelmeyer, A., Stewart, W., Woodford, J., & Coleman, M. (2006). Simulating social interaction to address deficits of autistic spectrum disorder in children. Cyberpsychology & Behavior, 9(2), 213–217.CrossRefGoogle Scholar
  84. von dem Hagen, Elisabeth, A. H., & Bright, N. (2016). High autistic trait individuals do not modulate gaze behaviour in response to social presence but look away more when actively engaged in an interaction. Autism Research.Google Scholar
  85. von Hofsten, C., Uhlig, H., Adell, M., & Kochukhova, O. (2009). How children with autism look at events. Research in Autism Spectrum Disorders, 3(2), 556–569.CrossRefGoogle Scholar
  86. Warren, Z. E., Zheng, Z., Swanson, A. R., Bekele, E., Zhang, L., Crittendon, J. A., & . . . Sarkar, N. (2015). Can robotic interaction improve joint attention skills? Journal of Autism and Developmental Disorders, 45(11), 3726–3734.Google Scholar
  87. Ye, Z., Li, Y., Fathi, A., Han, Y., Rozga, A., Abowd, G. D., & Rehg, J. M. (2012). Detecting eye contact using wearable eye-tracking glasses. Proceedings of the 2012 ACM Conference on Ubiquitous Computing, 699–704.Google Scholar
  88. Zaki, J., & Ochsner, K. (2009). The need for a cognitive neuroscience of naturalistic social cognition. Annals of the New York Academy of Sciences, 1167(1), 16–30.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of HaifaArielIsrael
  2. 2.University of Pierre and Marie CurieParisFrance

Personalised recommendations