Advertisement

Insights into the antineoplastic mechanism of Chelidonium majus via systems pharmacology approach

  • Xinzhe Xiao
  • Zehui Chen
  • Zengrui Wu
  • Tianduanyi Wang
  • Weihua Li
  • Guixia Liu
  • Bo ZhangEmail author
  • Yun TangEmail author
Research Article
  • 17 Downloads

Abstract

Background

The antineoplastic activity of Chelidonium majus has been reported, but its mechanism of action (MoA) is unsuspected. The emerging theory of systems pharmacology may be a useful approach to analyze the complicated MoA of this multi-ingredient traditional Chinese medicine (TCM).

Methods

We collected the ingredients and related compound-target interactions of C. majus from several databases. The bSDTNBI (balanced substructure-drug-target network-based inference) method was applied to predict each ingredient’s targets. Pathway enrichment analysis was subsequently conducted to illustrate the potential MoA, and prognostic genes were identified to predict the certain types of cancers that C. majus might be beneficial in treatment. Bioassays and literature survey were used to validate the in silico results.

Results

Systems pharmacology analysis demonstrated that C. majus exerted experimental or putative interactions with 18 cancer-associated pathways, and might specifically act on 13 types of cancers. Chelidonine, sanguinarine, chelerythrine, berberine, and coptisine, which are the predominant components of C. majus, may suppress the cancer genes by regulating cell cycle, inducing cell apoptosis and inhibiting proliferation.

Conclusions

The antineoplastic MoA of C. majus was investigated by systems pharmacology approach. C. majus exhibited promising pharmacological effect against cancer, and may consequently be useful material in further drug development. The alkaloids are the key components in C. majus that exhibit anticancer activity.

Keywords

systems pharmacology mechanism of action traditional Chinese medicine Chelidonium majus 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0502304), the National Natural Science Foundation of China (Nos. 81673356 and U1603122) and the 111 Project (No. B07023).

Supplementary material

40484_2019_165_MOESM1_ESM.jpg (220 kb)
Supplementary material, approximately 220 KB.

References

  1. 1.
    Chen, S.L., Song, J.Y., Sun, C., Xu, J., Zhu, Y.J. and Verpoorte, R. (2015) Herbal genomics: examining the biology of traditional medicine. Science/AAAS Custom Publishing Office, 347, S27–S29Google Scholar
  2. 2.
    Yin, N., Ma, W., Pei, J., Ouyang, Q., Tang, C. and Lai, L. (2014) Synergistic and antagonistic drug combinations depend on network topology. PLoS One, 9, e93960CrossRefGoogle Scholar
  3. 3.
    Colombo, M. L. and Bosisio, E. (1996) Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol. Res., 33, 127–134CrossRefGoogle Scholar
  4. 4.
    Gilca, M., Gaman, L., Panait, E., Stoian, I. and Atanasiu, V. (2010) Chelidonium majus–an integrative review: traditional knowledge versus modern findings. Forsch. Komplementarmed., 17, 241–248CrossRefGoogle Scholar
  5. 5.
    Danhof, M. (2016) Systems pharmacology–towards the modeling of network interactions. Eur. J. Pharm. Sci., 94, 4–14CrossRefGoogle Scholar
  6. 6.
    Xie, L., Draizen, E. J. and Bourne, P. E. (2017) Harnessing big data for systems pharmacology. Annu. Rev. Pharmacol. Toxicol., 57, 245–262CrossRefGoogle Scholar
  7. 7.
    Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J. and Tang, Y. (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol., 8, e1002503CrossRefGoogle Scholar
  8. 8.
    Wu, Z., Cheng, F., Li, J., Li, W., Liu, G. and Tang, Y. (2017) SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning. Brief. Bioinform., 18, 333–347Google Scholar
  9. 9.
    Wu, Z., Lu, W., Wu, D., Luo, A., Bian, H., Li, J., Li, W., Liu, G., Huang, J., Cheng, F., et al. (2016) In silico prediction of chemical mechanism of action via an improved network-based inference method. Br. J. Pharmacol., 173, 3372–3385CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Li, J., Wu, Z., Zhang, B., Yang, H., Wang, Q., Cai, Y., Liu, G., Li, W. and Tang, Y. (2017) Insights into the molecular mechanisms of Polygonum multiflorum Thunb-induced liver injury: a computational systems toxicology approach. Acta Pharmacol. Sin., 38, 719–732CrossRefGoogle Scholar
  11. 11.
    Wang, T., Wu, Z., Sun, L., Li, W., Liu, G. and Tang, Y. (2018) A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula Tian-Ma-Gou-Teng-Yin for treatment of alzheimer’s disease. Front. Pharmacol., 9, 668CrossRefGoogle Scholar
  12. 12.
    Chen, C. Y.-C. (2011) TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6, e15939CrossRefGoogle Scholar
  13. 13.
    Ru, J., Li, P., Wang, J., Zhou,W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., et al. (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 6, 13CrossRefGoogle Scholar
  14. 14.
    Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C. and Shi, T. (2013) TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 41, D1089–D1095CrossRefGoogle Scholar
  15. 15.
    Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., Mcglinchey, S., Michalovich, D., Al-Lazikani, B., et al. (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 40, D1100–D1107CrossRefGoogle Scholar
  16. 16.
    Liu, T., Lin, Y., Wen, X., Jorissen, R. N. and Gilson, M. K. (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res., 35, D198–D201CrossRefGoogle Scholar
  17. 17.
    Southan, C., Sharman, J. L., Benson, H. E., Faccenda, E., Pawson, A. J., Alexander, S. P. H., Buneman, O. P., Davenport, A. P., McGrath, J. C., Peters, J. A., et al. (2016) The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res., 44, D1054–D1068CrossRefGoogle Scholar
  18. 18.
    Roth, B. L., Lopez, E., Patel, S. and Kroeze, W. K. (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist, 6, 252–262CrossRefGoogle Scholar
  19. 19.
    Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57CrossRefGoogle Scholar
  20. 20.
    Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1–13CrossRefGoogle Scholar
  21. 21.
    Lei, Q., Zhao, X., Xu, L., Peng, Y. and Xiao, P. (2014) Chemical constituents of plants from tribe Chelidonieae and their bioactivities. Chin. Herb. Med., 6, 1–21CrossRefGoogle Scholar
  22. 22.
    Stork, P. J. S. and Schmitt, J. M. (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol., 12, 258–266CrossRefGoogle Scholar
  23. 23.
    Mehlen, P. and Puisieux, A. (2006) Metastasis: a question of life or death. Nat. Rev. Cancer, 6, 449–458CrossRefGoogle Scholar
  24. 24.
    Otrock, Z. K., Mahfouz, R. A. R., Makarem, J. A. and Shamseddine, A. I. (2007) Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis., 39, 212–220CrossRefGoogle Scholar
  25. 25.
    Lambert, A. W., Pattabiraman, D. R. and Weinberg, R. A. (2017) Emerging biological principles of metastasis. Cell, 168, 670–691CrossRefGoogle Scholar
  26. 26.
    Sanchez-Vega, F., Mina, M., Armenia, J., Chatila,W. K., Luna, A., La, K. C., Dimitriadoy, S., Liu, D. L., Kantheti, H. S., Saghafinia, S., et al. (2018) Oncogenic signaling pathways in the Cancer Genome Atlas. Cell, 173, 321–337.e310CrossRefGoogle Scholar
  27. 27.
    Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L., Bidkhori, G., Benfeitas, R., Arif, M., Liu, Z., Edfors, F., et al. (2017) A pathology atlas of the human cancer transcriptome. Science, 357, eaan2507Google Scholar
  28. 28.
    Sárközi, Á., Janicsák, G., Kursinszki, L. and Kéry, Á. (2006) Alkaloid composition of Chelidonium majus L. studied by different chromatographic techniques. Chromatographia, 63, S81–S86Google Scholar
  29. 29.
    Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674CrossRefGoogle Scholar
  30. 30.
    Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell, 100, 57–70CrossRefGoogle Scholar
  31. 31.
    Crowley, C. W., Cohen, R. L., Lucas, B. K., Liu, G., Shuman, M. A. and Levinson, A. D. (1993) Prevention of metastasis by inhibition of the urokinase receptor. Proc. Natl. Acad. Sci. USA, 90, 5021–5025CrossRefGoogle Scholar
  32. 32.
    Miller, C. and Koeffler, H. P. (1993) P53 mutations in human cancer. Leukemia, 7, S18–S21Google Scholar
  33. 33.
    Achbarou, A., Kaiser, S., Tremblay, G., Ste-Marie, L.-G., Brodt, P., Goltzman, D. and Rabbani, S. A. (1994) Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res., 54, 2372–2377Google Scholar
  34. 34.
    Xing, R. H. and Rabbani, S. A. (1996) Overexpression of urokinase receptor in breast cancer cells results in increased tumor invasion, growth and metastasis. Int. J. Cancer, 67, 423–429CrossRefGoogle Scholar
  35. 35.
    Vogt, P. K. (2001) Jun, the oncoprotein. Oncogene, 20, 2365–2377CrossRefGoogle Scholar
  36. 36.
    Stead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., Dhingra, U., Rathjen, P., Walker, D. and Dalton, S. (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21, 8320–8333CrossRefGoogle Scholar
  37. 37.
    Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A. and Mccubrey, J. A. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 17, 590–603CrossRefGoogle Scholar
  38. 38.
    Michalik, L., Desvergne, B. and Wahli, W. (2004) Peroxisomeproliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer, 4, 61–70CrossRefGoogle Scholar
  39. 39.
    Ciocca, D. R. and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 10, 86–103CrossRefGoogle Scholar
  40. 40.
    Hui, L., Bakiri, L., Mairhorfer, A., Schweifer, N., Haslinger, C., Kenner, L., Komnenovic, V., Scheuch, H., Beug, H. and Wagner, E. F. (2007) p38a suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat. Genet., 39, 741–749CrossRefGoogle Scholar
  41. 41.
    Gustafson, A. M., Soldi, R., Anderlind, C., Scholand, M. B., Qian, J., Zhang, X., Cooper, K., Walker, D., Mcwilliams, A., Liu, G., et al. (2010) Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci. Transl. Med., 2, 26ra25CrossRefGoogle Scholar
  42. 42.
    Malumbres, M. (2014) Cyclin-dependent kinases. Genome Biol., 15, 122CrossRefGoogle Scholar
  43. 43.
    Chen, X.-M., Zhang, M., Fan, P.-L., Qin, Y.-H. and Zhao, H.-W. (2016) Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines. Oncol. Lett., 11, 3917–3924CrossRefGoogle Scholar
  44. 44.
    Noureini, S. K. and Esmaili, H. (2014) Multiple mechanisms of cell death induced by chelidonine in MCF-7 breast cancer cell line. Chem. Biol. Interact., 223, 141–149CrossRefGoogle Scholar
  45. 45.
    Lee, J. S., Jung, W.-K., Jeong, M. H., Yoon, T. R. and Kim, H. K. (2012) Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 Ratio and caspase-9-dependent pathway. Int. J. Toxicol., 31, 70–77CrossRefGoogle Scholar
  46. 46.
    Ahmad, N., Gupta, S., Husain, M. M., Heiskanen, K. M. and Mukhtar, H. (2000) Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin. Cancer Res., 6, 1524–1528Google Scholar
  47. 47.
    Adhami, V. M., Aziz, M. H., Reagan-Shaw, S. R., Nihal, M., Mukhtar, H. and Ahmad, N. (2004) Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol. Cancer Ther., 3, 933–940.Google Scholar
  48. 48.
    Herbert, J. M., Augereau, J. M., Gleye, J. and Maffrand, J. P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Commun., 172, 993–999CrossRefGoogle Scholar
  49. 49.
    Malikova, J., Zdarilova, A. and Hlobilkova, A. (2006) Effects of sanguinarine and chelerythrine on the cell cycle and apoptosis. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 150, 5–12CrossRefGoogle Scholar
  50. 50.
    Vrba, J., Doležel, P., Vicar, J., Modrianský, M. and Ulrichová, J. (2008) Chelerythrine and dihydrochelerythrine induce G1 phase arrest and bimodal cell death in human leukemia HL-60 cells. Toxicol. In Vitro, 22, 1008–1017CrossRefGoogle Scholar
  51. 51.
    Sun, Y., Xun, K., Wang, Y. and Chen, X. (2009) A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs, 20, 757–769CrossRefGoogle Scholar
  52. 52.
    Li, J., Qiu, D. M., Chen, S. H., Cao, S. P. and Xia, X. L. (2014) Suppression of human breast cancer cell metastasis by coptisine in vitro. Asian Pac. J. Cancer Prev., 15, 5747–5751CrossRefGoogle Scholar
  53. 53.
    Rao, P. C., Begum, S., Sahai, M. and Sriram, D. S. (2017) Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species–dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells. Tumour Biol., 39Google Scholar
  54. 54.
    Nadova, S., Miadokova, E., Alfoldiova, L., Kopaskova, M., Hasplova, K., Hudecova, A., Vaculcikova, D., Gregan, F. and Cipak, L. (2008) Potential antioxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuroendocrinol. Lett., 29, 649–652Google Scholar
  55. 55.
    Deljanin, M., Nikolic, M., Baskic, D., Todorovic, D., Djurdjevic, P., Zaric, M., Stankovic, M., Todorovic, M., Avramovic, D. and Popovic, S. (2016) Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines. J. Ethnopharmacol., 190, 362–371CrossRefGoogle Scholar
  56. 56.
    Zhang, L., Chen, Z. H., Chen, H. Y., Wang, X. Q., Zhang, B. and University, S. (2018) Study on antitumor molecular mechanism of Chelidonium majus based on network pharmacology. Chin. Tradit. Herbal Drugs, 49, 646–657Google Scholar
  57. 57.
    Yu, H., Chen, J., Xu, X., Li, Y., Zhao, H., Fang, Y., Li, X., Zhou, W., Wang, W. and Wang, Y. (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One, 7, e37608CrossRefGoogle Scholar
  58. 58.
    O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011) Open Babel: an open chemical toolbox. J. Cheminform., 3, 33CrossRefGoogle Scholar
  59. 59.
    Small-Molecule Drug Discovery Suite 2015–2, Schrödinger, LLC, New York, 2015Google Scholar
  60. 60.
    Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res., 33, D154–D159CrossRefGoogle Scholar
  61. 61.
    Klekota, J. and Roth, F. P. (2008) Chemical substructures that enrich for biological activity. Bioinformatics, 24, 2518–2525CrossRefGoogle Scholar
  62. 62.
    Yap, C. W. (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 32, 1466–1474CrossRefGoogle Scholar
  63. 63.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xinzhe Xiao
    • 1
  • Zehui Chen
    • 2
  • Zengrui Wu
    • 1
  • Tianduanyi Wang
    • 1
  • Weihua Li
    • 1
  • Guixia Liu
    • 1
  • Bo Zhang
    • 2
    Email author
  • Yun Tang
    • 1
    Email author
  1. 1.Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and TechnologyShanghaiChina
  2. 2.Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of Education, Shihezi UniversityShiheziChina

Personalised recommendations