Advertisement

Quantitative Biology

, Volume 3, Issue 3, pp 124–134 | Cite as

Network-based method to infer the contributions of proteins to the etiology of drug side effects

  • Rui Li
  • Ting Chen
  • Shao Li
Research Article

Abstract

Studying the molecular mechanisms that underlie the relationship between drugs and the side effects they produce is critical for drug discovery and drug development. Currently, however, computational methods are still unavailable to assess drug-protein interactions with the aim of globally inferring the contributions of various classes of proteins toward the etiology of side effects. In this work, we integrated data reflecting drug-side effect relationships, drugtarget relationships, and protein-protein interactions to develop a novel network-based probabilistic model, SidePro, to evaluate the contributions of proteins toward the etiology of side effects. For a given side effect, the method applies an expectation—maximization algorithm and a diffusion kernel-based approach to estimate each protein’s contribution. We applied this method to a wide range of side effects and validated the results using cross-validation and records from the Side Effect Resource database. We also studied a specific side effect, nephrotoxicity, which is known to be associated with the irrational use of the Chinese herbal compound triptolide, a diterpenoid epoxide in the Thunder of God Vine, Tripterygium wilfordii (Lei-Gong-Teng). Using triptolide as an example, we scored the target proteins of triptolide using our model and investigated the high-scoring proteins and their related biological processes. The results demonstrated that our model could differentiate between the potential side effect targets and therapeutic targets of triptolide. Overall, the proposed model could accurately pinpoint the molecular mechanisms of drug side effects, thus making contribution to safe and effective drug development.

Keywords

network pharmacology drug targets side effects triptolide 

References

  1. 1.
    Scheiber, J., Chen, B., Milik, M., Sukuru, S. C. K., Bender, A., Mikhailov, D., Whitebread, S., Hamon, J., Azzaoui, K., Urban, L., et al. (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J. Chem. Inf. Model, 49, 308–317CrossRefPubMedGoogle Scholar
  2. 2.
    Berger, S. I. and Iyengar, R. (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 129–135PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Roses, A. D. (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat. Rev. Genet., 5, 645–656CrossRefPubMedGoogle Scholar
  4. 4.
    Stevens, J. L. and Baker, T. K. (2009) The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov. Today, 14, 162–167CrossRefPubMedGoogle Scholar
  5. 5.
    Shah, R. R. (2006) Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics, 7, 889–908CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang, W., Roederer, M. W., Chen, W.-Q., Fan, L. and Zhou, H.-H. (2012) Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics, 13, 223–231CrossRefPubMedGoogle Scholar
  7. 7.
    Liebler, D. C. and Guengerich, F. P. (2005) Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov., 4, 410–420CrossRefPubMedGoogle Scholar
  8. 8.
    Li, R., Ma, T., Gu, J., Liang, X. and Li, S. (2013) Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients. Sci. Rep., 3, 1543PubMedCentralPubMedGoogle Scholar
  9. 9.
    Zhao, S. and Li, S. (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One, 5, e11764PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, B., Wang, X. and Li, S. (2013) An integrative platform of TCM network pharmacology and its application on an herbal formula, Qing-Luo-Yin. Evid-Based Compl. Alt. Med., 2013, 456747Google Scholar
  11. 11.
    Li, S., Zhang, B., Jiang, D., Wei, Y. and Zhang, N. (2010) Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics, 11, S6PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Li, S., Zhang, B. and Zhang, N. (2011) Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol, 5, S10CrossRefGoogle Scholar
  13. 13.
    Liang, X., Li, H. and Li, S. (2014) A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 10, 1014–1022CrossRefPubMedGoogle Scholar
  14. 14.
    Scheiber, J., Jenkins, J. L., Sukuru, S. C. K., Bender, A., Mikhailov, D., Milik, M., Azzaoui, K., Whitebread, S., Hamon, J., Urban, L., et al. (2009) Mapping adverse drug reactions in chemical space. J. Med. Chem., 52, 3103–3107CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, S., Lee, K. H., Song, M. and Lee, D. (2011) Building the processdrug- side effect network to discover the relationship between biological processes and side effects. BMC Bioinformatics, 12, S2PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Wallach, I., Jaitly, N. and Lilien, R. (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One, 5, e12063PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Atias, N. and Sharan, R. (2011) An algorithmic framework for predicting side effects of drugs. J. Comput. Biol., 18, 207–218CrossRefPubMedGoogle Scholar
  18. 18.
    Huang, L. C., Wu, X. and Chen, J. Y. (2013) Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics, 13, 313–324CrossRefPubMedGoogle Scholar
  19. 19.
    Yamanishi, Y., Pauwels, E. and Kotera, M. (2012) Drug side-effect prediction based on the integration of chemical and biological spaces. J. Chem. Inf. Model, 52, 3284–3292CrossRefPubMedGoogle Scholar
  20. 20.
    Huang, L. C., Wu, X. and Chen, J. Y. (2011) Predicting adverse side effects of drugs. BMC Genomics, 12, S11PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Mizutani, S., Pauwels, E., Stoven, V., Goto, S. and Yamanishi, Y. (2012) Relating drug-protein interaction network with drug side effects. Bioinformatics, 28, i522–i528PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Kuhn, M., Al Banchaabouchi, M., Campillos, M., Jensen, L. J., Gross, C., Gavin, A.-C. and Bork, P. (2013) Systematic identification of proteins that elicit drug side effects. Mol. Syst. Biol., 9, 663PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., Lavan, P., Weber, E., Doak, A. K., Côté, S., et al. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486, 361–367PubMedCentralPubMedGoogle Scholar
  24. 24.
    Wallach, I., Jaitly, N. and Lilien, R. (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One, 5, e12063PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. and Bork, P. (2010) A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 6, 343PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Vanherweghem, J. L., Depierreux, M., Tielemans, C., Abramowicz, D., Dratwa, M., Jadoul, M., Richard, C., Vandervelde, D., Verbeelen, D., Vanhaelen-Fastre, R., et al. (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet, 341, 387–391CrossRefPubMedGoogle Scholar
  27. 27.
    Allard, T., Wenner, T., Greten, H. J. and Efferth, T. (2013) Mechanisms of herb-induced nephrotoxicity. Curr. Med. Chem., 20, 2812–2819CrossRefPubMedGoogle Scholar
  28. 28.
    Nowack, R., et al. (2011) Herbal treatments of glomerulonephritis and chronic renal failure: Review and recommendations for research. J. Pharm. Phyt., 3, 124–136Google Scholar
  29. 29.
    Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., et al. (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res., 39, D1035–D1041PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kuhn, M., Szklarczyk, D., Franceschini, A., von Mering, C., Jensen, L. J. and Bork, P. (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res., 40, D876–D880PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T. K., Gronborg, M., et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res., 13, 2363–2371PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F., Pawson, T. and Hogue, C. W. (2001) BIND — The Biomolecular Interaction Network Database. Nucleic Acids Res., 29, 242–245PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., et al. (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res., 40, D841–D846PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A. P., Santonico, E., et al. (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res., 40, D857–D861PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Brown, K. R. and Jurisica, I. (2005) Online predicted human interaction database. Bioinformatics, 21, 2076–2082CrossRefPubMedGoogle Scholar
  36. 36.
    Szaszák, M., Chen, H.-D., Chen, H.-C., Baukal, A., Hunyady, L. and Catt, K. J. (2008) Identification of the invariant chain (CD74) as an angiotensin AGTR1-interacting protein. J. Endocrinol., 199, 165–176CrossRefPubMedGoogle Scholar
  37. 37.
    Basile, D. P., Liapis, H. and Hammerman, M. R. (1997) Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am. J. Physiol., 272, F640–F647PubMedGoogle Scholar
  38. 38.
    Zhou, H., Miyaji, T., Kato, A., Fujigaki, Y., Sano, K. and Hishida, A. (1999) Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death. J. Lab. Clin. Med., 134, 649–658CrossRefPubMedGoogle Scholar
  39. 39.
    Qiu, L.-Q., Sinniah, R. and I-Hong Hsu, S. (2004) Downregulation of Bcl-2 by podocytes is associated with progressive glomerular injury and clinical indices of poor renal prognosis in human IgA nephropathy. J. Am. Soc. Nephrol., 15, 79–90CrossRefPubMedGoogle Scholar
  40. 40.
    Harris, R. C. (2006) COX-2 and the kidney. J. Cardiovasc. Pharmacol., 47, S37–S42CrossRefPubMedGoogle Scholar
  41. 41.
    Fujihara, C. K., Antunes, G. R., Mattar, A. L., Andreoli, N., Malheiros, D. M., Noronha, I. L., Zatz, R. and Zatz, R. (2003) Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int., 64, 2172–2181CrossRefPubMedGoogle Scholar
  42. 42.
    Kondor, R. I. and Lafferty, J. D. (2002) Diffusion kernels on graphs and other discrete input spaces. Proceedings, ICML, 2, 315–322Google Scholar
  43. 43.
    Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 2, 27CrossRefGoogle Scholar
  45. 45.
    Lin, C.-J. and Weng, R. C. (2004) Simple probabilistic predictions for support vector regression. Technical report, National Taiwan University, TaipeiGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2015

Authors and Affiliations

  1. 1.MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of AutomationTsinghua UniversityBeijingChina
  2. 2.Program in Computational Biology and BioinformaticsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations