Quantitative Biology

, Volume 2, Issue 2, pp 59–70 | Cite as

Target specificity of the CRISPR-Cas9 system

  • Xuebing Wu
  • Andrea J. Kriz
  • Phillip A. SharpEmail author


The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system.


CRISPR Cas9 target specificity off-targets genome engineering 

Supplementary material

40484_2014_30_MOESM1_ESM.xlsx (15 kb)
Supplementary material, approximately 15.3 KB.


  1. 1.
    Marraffini, L. A. and Sontheimer, E. J. (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 11, 181–190PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Barrangou, R. and Marraffini, L. A. (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell, 54, 234–244PubMedCrossRefGoogle Scholar
  3. 3.
    Deveau, H., Garneau, J. E. and Moineau, S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 64, 475–493PubMedCrossRefGoogle Scholar
  4. 4.
    Horvath, P. and Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 167–170PubMedCrossRefGoogle Scholar
  5. 5.
    Van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. and Brouns, S. J. J. (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci., 34, 401–407PubMedCrossRefGoogle Scholar
  6. 6.
    Terns, M. P. and Terns, R. M. (2011) CRISPR-based adaptive immune systems. Curr. Opin. Microbiol., 14, 321–327PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821PubMedCrossRefGoogle Scholar
  8. 8.
    Mali, P., Esvelt, K. M. and Church, G. M. (2013) Cas9 as a versatile tool for engineering biology. Nat. Methods, 10, 957–963PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zhang, F., Wen, Y. and Guo, X. (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet., doi: 10.1093/hmg/ddu125Google Scholar
  11. 11.
    Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278PubMedCrossRefGoogle Scholar
  12. 12.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L. and Jaenisch, R. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154, 1370–1379PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Jao, L.E., Wente, S. R. and Chen, W. (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA, 110, 13904–13909PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H. and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J. Biol. Chem., doi: 10.1074/ibc.M114.564625Google Scholar
  17. 17.
    Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., et al. (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res., 41, e141PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Torres, R., Martin, M. C., Garcia, A., Cigudosa, J. C., Ramirez, J. C. and Rodriguez-Perales, S. (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPRCas9 system. Nat. Commun., 5, 3964PubMedCrossRefGoogle Scholar
  19. 19.
    Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P. and Del Bene, F. (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res., 24, 142–153PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C. and Schmid, B. (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987PubMedCrossRefGoogle Scholar
  21. 21.
    Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C. K., et al. (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658PubMedCrossRefGoogle Scholar
  22. 22.
    Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D. and Li, J. (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13, 659–662PubMedCrossRefGoogle Scholar
  23. 23.
    Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T. and Anderson, D. G. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 32, 551–553PubMedCrossRefGoogle Scholar
  24. 24.
    Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S. and Qi, L. S. (2013) CRISPR interference (CRISPRi) for sequencespecific control of gene expression. Nat. Protoc., 8, 2180–2196PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., et al. (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNAguided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W., Rangarajan, S., Shivalila, C. S., Dadon, D. B. and Jaenisch, R. (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNAguided transcriptional activator system. Cell Res., 23, 1163–1171PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kearns, N. A., Genga, R. M. J., Enuameh, M. S., Garber, M., Wolfe, S. A. and Maehr, R. (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 141, 219–223PubMedCrossRefGoogle Scholar
  29. 29.
    Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838PubMedCrossRefGoogle Scholar
  30. 30.
    Farzadfard, F., Perli, S. D. and Lu, T. K. (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol., 2, 604–613PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., et al. (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479–1491PubMedCrossRefGoogle Scholar
  32. 32.
    Qiu, P., Shandilya, H., D’Alessio, J. M., O’Connor, K., Durocher, J. and Gerard, G. F. (2004) Mutation detection using Surveyor nuclease. Biotechniques, 36, 702–707PubMedGoogle Scholar
  33. 33.
    Mashal, R. D., Koontz, J. and Sklar, J. (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet., 9, 177–183PubMedCrossRefGoogle Scholar
  34. 34.
    Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., et al. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 31, 827–832PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Carroll, D. (2013) Staying on target with CRISPR-Cas. Nat. Biotechnol., 31, 807–809PubMedCrossRefGoogle Scholar
  37. 37.
    Wu, X., Scott, D. A., Kriz, A. J., Chiu, A. C., Hsu, P. D., Dadon, D. B., Cheng, A. W., Trevino, A. E., Konermann, S., Chen, S., et al. (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol., 32, 670–676PubMedCrossRefGoogle Scholar
  38. 38.
    Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Guilinger, J. P., Pattanayak, V., Reyon, D., Tsai, S. Q., Sander, J. D., Joung, J. K. and Liu, D. R. (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods, 11, 429–435PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Pattanayak, V., Ramirez, C. L., Joung, J. K. and Liu, D. R. (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods, 8, 765–770PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C. C., Wang, J., Friedman, G., et al. (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol., 29, 816–823PubMedCrossRefGoogle Scholar
  42. 42.
    Sander, J. D., Ramirez, C. L., Linder, S. J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J. A., Reyon, D., Bernstein, B. E., Liu, D. R., et al. (2013) In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res., 41, e181PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNAguided endonucleases and nickases. Genome Res., 24, 132–141PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Kuscu, C., Arslan, S., Singh, R., Thorpe, J. and Adli, M. (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol., 32, 677–683PubMedCrossRefGoogle Scholar
  45. 45.
    O’Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. (2014) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. BioRxiv, Cold Spring Harbor Labs, doi: Google Scholar
  46. 46.
    Chailleux, C., Aymard, F., Caron, P., Daburon, V., Courilleau, C., Canitrot, Y., Legube, G. and Trouche, D. (2014) Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nat. Protoc., 9, 517–528PubMedCrossRefGoogle Scholar
  47. 47.
    Crosetto, N., Mitra, A., Silva, M. J., Bienko, M., Dojer, N., Wang, Q., Karaca, E., Chiarle, R., Skrzypczak, M., Ginalski, K., et al. (2013) Nucleotide-resolution DNA double-strand break mapping by nextgeneration sequencing. Nat. Methods, 10, 361–365PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Chiu, H., Schwartz, H. T., Antoshechkin, I. and Sternberg, P.W. (2013) Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics, 195, 1167–1171PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., et al. (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Casinduced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. USA, 111, 4632–4637PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., et al. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J., doi:10.1111/pbi.12200Google Scholar
  51. 51.
    Veres, A., Gosis, B. S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Talkowski, M. E. and Musunuru, K. (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 15, 27–30PubMedCrossRefGoogle Scholar
  52. 52.
    Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brodsky, R. A., Zhang, K., Cheng, L., et al. (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15, 12–13PubMedCrossRefGoogle Scholar
  53. 53.
    Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Teytelman, L., Thurtle, D. M., Rine, J. and van Oudenaarden, A. (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA, 110, 18602–18607PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., et al. (2013) RNA-guided gene activation by CRISPRCas9-based transcription factors. Nat. Methods, 10, 973–976PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Nishimasu, H., Ran, F. A. A., Hsu, P. D. D., Konermann, S., Shehata, S. I. I., Dohmae, N., Ishitani, R., Zhang, F. and Nureki, O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949PubMedCrossRefGoogle Scholar
  57. 57.
    Garneau, J. E., Dupuis, M.-., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H. and Moineau, S. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67–71PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang, Y., Heidrich, N., Ampattu, B. J., Gunderson, C. W., Seifert, H. S., Schoen, C., Vogel, J. and Sontheimer, E. J. (2013) Processingindependent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell, 50, 488–503PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62–67PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389PubMedCrossRefGoogle Scholar
  61. 61.
    Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M., Vertino, P. M., Stewart, F. J. and Bao, G. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res., 42, 7473–7485PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Jiang, W., Bikard, D., Cox, D., Zhang, F. and Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31, 233–239PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. and Lu, T. K. (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell, 54, 698–710PubMedCrossRefGoogle Scholar
  65. 65.
    Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie, Z., Li, Y. and Weiss, R. (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods, 11, 723–726PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J.-S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ramakrishna, S., Kwaku Dad, A.-B., Beloor, J., Gopalappa, R., Lee, S.-K. and Kim, H. (2014) Gene disruption by cell-penetrating peptidemediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Bitinaite, J., Wah, D. A., Aggarwal, A. K. and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA, 95, 10570–10575PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Guilinger, J. P., Thompson, D. B. and Liu, D. R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 32, 577–582PubMedCrossRefGoogle Scholar
  70. 70.
    Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J. and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol., 32, 569–576PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Ma M, Ye AY, Zheng W, Kong L. (2013) A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res. Int. 2013, 270805PubMedCentralPubMedGoogle Scholar
  72. 72.
    Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123PubMedCrossRefGoogle Scholar
  73. 73.
    Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G. (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. BioinformaticsGoogle Scholar
  74. 74.
    Bae, S., Park, J. and Kim, J.-S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. and Valen, E. (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res., 42, W401–407PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Gratz, S. J., Ukken, F. P., Rubinstein, C. D., Thiede, G., Donohue, L. K., Cummings, A. M. and O’Connor-Giles, K. M. (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics, 196, 961–971PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Aach J, Mali P, Church GM. (2014) CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. BioRxiv, Cold Spring Harbor Labs, doi: 10.1101/005074 Google Scholar
  78. 78.
    Xie, S., Shen, B., Zhang, C., Huang, X. and Zhang, Y. (2014) sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, e100448PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Sander, J. D., Zaback, P., Joung, J. K., Voytas, D. F. and Dobbs, D. (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res., 35, W599–605PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K. and Dobbs, D. (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res., 38, W462–468PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., et al. (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9, 467–477PubMedCrossRefGoogle Scholar
  82. 82.
    Wang, T., Wei, J. J., Sabatini, D. M. and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J. and Church, G. M. (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods, 10, 1116–1121PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2014

Authors and Affiliations

  • Xuebing Wu
    • 1
    • 2
  • Andrea J. Kriz
    • 3
  • Phillip A. Sharp
    • 1
    • 3
    Email author
  1. 1.David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Computational and Systems Biology Graduate ProgramMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations