Quantitative Biology

, Volume 1, Issue 3, pp 201–208

Population dynamics of cancer cells with cell state conversions

  • Da Zhou
  • Dingming Wu
  • Zhe Li
  • Minping Qian
  • Michael Q. Zhang
Research article

Abstract

Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed very recently. Here we present a general population model of cancer cells by integrating conventional cell divisions with direct conversions between different cell states, namely, not only can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate into CSCs by cell state conversion. Our theoretical model is validated when applying the model to recent experimental data. It is also found that the transient increase in CSCs proportion initiated from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is required especially for the transient dynamics. The theoretical analysis also gives the condition such that our general model can be equivalently reduced into a simple Markov chain with only cell state transitions keeping the same cell proportion dynamics.

Supplementary material

40484_2013_14_MOESM1_ESM.pdf (111 kb)
Supplementary material, approximately 123 KB.

References

  1. 1.
    Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMedCrossRefGoogle Scholar
  2. 2.
    Jordan, C. T., Guzman, M. L. and Noble, M. (2006) Cancer stem cells. N. Engl. J. Med., 355, 1253–1261.PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen, L. V., Vanner, R., Dirks, P. and Eaves, C. J. (2012) Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 12, 133–143.PubMedGoogle Scholar
  4. 4.
    Dalerba, P., Cho, R. W. and Clarke, M. F. (2007) Cancer stem cells: models and concepts. Annu. Rev. Med., 58, 267–284.PubMedCrossRefGoogle Scholar
  5. 5.
    Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J. and Heeschen, C. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosen, J. M. and Jordan, C. T. (2009) The increasing complexity of the cancer stem cell paradigm. Science, 324, 1670–1673.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Alison, M. R., Lim, S. M. L. and Nicholson, L. J. (2011) Cancer stem cells: problems for therapy? J. Pathol., 223, 147–161.PubMedCrossRefGoogle Scholar
  8. 8.
    Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., et al. (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. U.S.A., 108, 7950–7955.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Meyer, M. J., Fleming, J. M., Ali, M. A., Pesesky, M. W., Ginsburg, E. and Vonderhaar, B. K. (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res., 11, R82.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633–644.PubMedCrossRefGoogle Scholar
  11. 11.
    Scaffidi, P. and Misteli, T. (2011) In vitro generation of human cells with cancer stem cell properties. Nat. Cell Biol., 13, 1051–1061.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Iliopoulos, D., Hirsch, H. A., Wang, G. and Struhl, K. (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U.S. A., 108, 1397–1402.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yang, G., Quan, Y., Wang, W., Fu, Q., Wu, J., Mei, T., Li, J., Tang, Y., Luo, C., Ouyang, Q., et al. (2012) Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br. J. Cancer, 106, 1512–1519.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zapperi, S. and La Porta, C. A. M. (2012) Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers. Sci. Rep., 2, 441.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Nordling, C. O. (1953) A new theory on the cancer-inducing mechanism. Br. J. Cancer, 7, 68–72.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Armitage, P. and Doll, R. (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer, 8, 1–12.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fisher, J. C. (1958) Multiple-mutation theory of carcinogenesis. Nature, 181, 651–652.PubMedCrossRefGoogle Scholar
  18. 18.
    Ganguly, R. and Puri, I. K. (2006) Mathematical model for the cancer stem cell hypothesis. Cell Prolif., 39, 3–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Enderling, H., Chaplain, M. A. J., Anderson, A. R. A. and Vaidya, J. S. (2007) A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol., 246, 245–259.PubMedCrossRefGoogle Scholar
  20. 20.
    Michor, F. (2008) Mathematical models of cancer stem cells. J. Clin. Oncol., 26, 2854–2861.PubMedCrossRefGoogle Scholar
  21. 21.
    La Porta, C. A. M., Zapperi, S. and Sethna, J. P. (2012) Senescent cells in growing tumors: population dynamics and cancer stem cells. PLoS Comput. Biol., 8, e1002316.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Johnston, M. D., Edwards, C. M., Bodmer, W. F., Maini, P. K. and Chapman, S. J. (2007) Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. U.S.A., 104, 4008–4013.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Boman, B. M., Wicha, M. S., Fields, J. Z. and Runquist, O. A. (2007) Symmetric division of cancer stem cells-a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin. Pharmacol. Ther., 81, 893–898.PubMedCrossRefGoogle Scholar
  24. 24.
    Dingli, D., Traulsen, A. and Michor, F. (2007) (A)symmetric stem cell replication and cancer. PLoS Comput. Biol., 3, e53.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dingli, D., Traulsen, A. and Pacheco, J. M. (2007) Compartmental architecture and dynamics of hematopoiesis. PLoS ONE, 2, e345.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Antal, T. and Krapivsky, P. L. (2011) Exact solution of a two-type branching process: models of tumor progression. J. Stat. Mech., P08018.Google Scholar
  27. 27.
    Sottoriva, A., Vermeulen, L. and Tavaré, S. (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput. Biol., 7, e1001132.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Werner, B., Dingli, D., Lenaerts, T., Pacheco, J. M. and Traulsen, A. (2011) Dynamics of mutant cells in hierarchical organized tissues. PLoS Comput. Biol., 7, e1002290.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Molina-Peña, R. and Álvarez, M. M. (2012) A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PLoS ONE, 7, e26233.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Holz, M. and Fahr, A. (2001) Compartment modeling. Adv. Drug Deliv. Rev., 48, 249–264.PubMedCrossRefGoogle Scholar
  31. 31.
    Tao, Y., Ruan, J., Yeh, S. H., Lu, X., Wang, Y., Zhai, W., Cai, J., Ling, S., Gong, Q., Chong, Z., et al. (2011) Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc. Natl. Acad. Sci. U.S.A., 108, 12042–12047.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362.PubMedCrossRefGoogle Scholar
  33. 33.
    Fillmore, C. M. and Kuperwasser, C. (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res., 10, R25.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med., 350, 1353–1356.PubMedCrossRefGoogle Scholar
  35. 35.
    Marusyk, A., Almendro, V. and Polyak, K. (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer, 12, 323–334.PubMedCrossRefGoogle Scholar
  36. 36.
    Axelrod, R., Axelrod, D. E. and Pienta, K. J. (2006) Evolution of cooperation among tumor cells. Proc. Natl. Acad. Sci. U.S.A., 103, 13474–13479.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678–684.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Chen, L., Liu, R., Liu, Z. P., Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Zhang, X. J., Qian, H. and Qian, M. (2012) Stochastic theory of nonequilibrium steady states and its applications. part I. Phys. Rep., 510, 1–86.Google Scholar
  40. 40.
    Ge, H., Qian, M. and Qian, H. (2012) Stochastic theory of nonequilibrium steady states. part II: Applications in chemical biophysics. Phys. Rep., 510, 87–118.CrossRefGoogle Scholar
  41. 41.
    Ao, P. (2008) Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys., 49, 1073–1090.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2013

Authors and Affiliations

  • Da Zhou
    • 1
  • Dingming Wu
    • 1
  • Zhe Li
    • 2
  • Minping Qian
    • 3
  • Michael Q. Zhang
    • 1
    • 4
  1. 1.MOE Key Laboratory of Bioinformatics; Bioinformatics Division/Center for Synthetic & Systems Biology, TNLIST; Department of AutomationTsinghua UniversityBeijingChina
  2. 2.Computational Neuroscience Lab, School of MedicineTsinghua UniversityBeijingChina
  3. 3.School of Mathematical SciencesPeking UniversityBeijingChina
  4. 4.Department of Molecular and Cell Biology, Center for Systems BiologyThe University of Texas at DallasRichardsonUSA

Personalised recommendations