Quantitative Biology

, Volume 1, Issue 2, pp 131–139 | Cite as

Predictive power of cell-to-cell variability

  • Bochong Li
  • Lingchong YouEmail author


Much of our current knowledge of biology has been constructed based on population-average measurements. However, advances in single-cell analysis have demonstrated the omnipresent nature of cell-to-cell variability in any population. On one hand, tremendous efforts have been made to examine how such variability arises, how it is regulated by cellular networks, and how it can affect cell-fate decisions by single cells. On the other hand, recent studies suggest that the variability may carry valuable information that can facilitate the elucidation of underlying regulatory networks or the classification of cell states. To this end, a major challenge is determining what aspects of variability bear significant biological meaning. Addressing this challenge requires the development of new computational tools, in conjunction with appropriately chosen experimental platforms, to more effectively describe and interpret data on cell-cell variability. Here, we discuss examples of when population heterogeneity plays critical roles in determining biologically and clinically significant phenotypes, how it serves as a rich information source of regulatory mechanisms, and how we can extract such information to gain a deeper understanding of biological systems.


Cellular Network Intrinsic Noise Phenotypic Heterogeneity Chemical Master Equation Probabilistic Boolean Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balázsi, G., van Oudenaarden, A. and Collins, J. J. (2011) Cellular decision making and biological noise: From microbes to mammals. Cell, 144, 910–925.PubMedCrossRefGoogle Scholar
  2. 2.
    Nachman, I., Regev, A. and Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis. Cell, 131, 544–556.PubMedCrossRefGoogle Scholar
  3. 3.
    Raj, A. and van Oudenaarden, A. (2008) Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell, 135, 216–226.PubMedCrossRefGoogle Scholar
  4. 4.
    Spencer, S. L. and Sorger, P. K. (2011) Measuring and modeling apoptosis in single cells. Cell, 144, 926–939.PubMedCrossRefGoogle Scholar
  5. 5.
    Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. and Huang, S. (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453, 544–547.PubMedCrossRefGoogle Scholar
  6. 6.
    Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C. G. and Brent, R. (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature, 437, 699–706.PubMedCrossRefGoogle Scholar
  7. 7.
    Raj, A., Rifkin, S. A., Andersen, E. and van Oudenaarden, A. (2010) Variability in gene expression underlies incomplete penetrance. Nature, 463, 913–918.PubMedCrossRefGoogle Scholar
  8. 8.
    Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459, 428–432.PubMedCrossRefGoogle Scholar
  9. 9.
    Tay, S., Hughey, J. J., Lee, T. K., Lipniacki, T., Quake, S. R. and Covert, M.W. (2010) Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature, 466, 267–271.PubMedCrossRefGoogle Scholar
  10. 10.
    Khan, M., Vaes, E. and Mombaerts, P. (2011) Regulation of the probability of mouse odorant receptor gene choice. Cell, 147, 907–921.PubMedCrossRefGoogle Scholar
  11. 11.
    Zeng, L., Skinner, S. O., Zong, C., Sippy, J., Feiss, M. and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell, 141, 682–691.PubMedCrossRefGoogle Scholar
  12. 12.
    Vlamakis, H., Aguilar, C., Losick, R. and Kolter, R. (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes. Dev., 22, 945–953.PubMedCrossRefGoogle Scholar
  13. 13.
    St-Pierre, F. and Endy, D. (2008) Determination of cell fate selection during phage lambda infection. Proc. Natl. Acad. Sci. USA, 105, 20705–20710.PubMedCrossRefGoogle Scholar
  14. 14.
    Zong, C., So, L. H., Sepúlveda, L. A., Skinner, S. O. and Golding, I. (2010) Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol. Syst. Biol., 6, 440.PubMedCrossRefGoogle Scholar
  15. 15.
    Snijder, B., Sacher, R., Rämö, P., Damm, E. M., Liberali, P. and Pelkmans, L. (2009) Population context determines cell-to-cell variability in endocytosis and virus infection. Nature, 461, 520–523.PubMedCrossRefGoogle Scholar
  16. 16.
    Feinerman, O., Jentsch, G., Tkach, K. E., Coward, J. W., Hathorn, M. M., Sneddon, M. W., Emonet, T., Smith, K. A. and Altan-Bonnet, G. (2010) Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol., 6, 437.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen, A. A., Geva-Zatorsky, N., Eden, E., Frenkel-Morgenstern, M., Issaeva, I., Sigal, A., Milo, R., Cohen-Saidon, C., Liron, Y., Kam, Z., et al. (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science, 322, 1511–1516.PubMedCrossRefGoogle Scholar
  18. 18.
    Snijder, B. and Pelkmans, L. (2011) Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol., 12, 119–125.PubMedCrossRefGoogle Scholar
  19. 19.
    Mettetal, J. T., Muzzey, D., Pedraza, J. M., Ozbudak, E. M. and van Oudenaarden, A. (2006) Predicting stochastic gene expression dynamics in single cells. Proc. Natl. Acad. Sci. USA, 103, 7304–7309.PubMedCrossRefGoogle Scholar
  20. 20.
    Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA, 99, 12795–12800.PubMedCrossRefGoogle Scholar
  21. 21.
    Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186.PubMedCrossRefGoogle Scholar
  22. 22.
    Losick, R. and Desplan, C. (2008) Stochasticity and cell fate. Science, 320, 65–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Acar, M., Mettetal, J. T. and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet., 40, 471–475.PubMedCrossRefGoogle Scholar
  24. 24.
    Wernet, M. F., Mazzoni, E. O., Celik, A., Duncan, D. M., Duncan, I. and Desplan, C. (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature, 440, 174–180.PubMedCrossRefGoogle Scholar
  25. 25.
    Johnston, R. J. Jr and Desplan, C. (2010) Stochastic mechanisms of cell fate specification that yield random or robust outcomes. Annu. Rev. Cell Dev. Biol., 26, 689–719.PubMedCrossRefGoogle Scholar
  26. 26.
    Chabot, J. R., Pedraza, J. M., Luitel, P. and van Oudenaarden, A. (2007) Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. Nature, 450, 1249–1252.PubMedCrossRefGoogle Scholar
  27. 27.
    Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. and Schaffer, D. V. (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell, 122, 169–182.PubMedCrossRefGoogle Scholar
  28. 28.
    Maamar, H., Raj, A. and Dubnau, D. (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science, 317, 526–529.PubMedCrossRefGoogle Scholar
  29. 29.
    Eldar, A. and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. Nature, 467, 167–173.PubMedCrossRefGoogle Scholar
  30. 30.
    Yao, G., Lee, T. J., Mori, S., Nevins, J. R. and You, L. C. (2008) A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol. 10, 476–482.PubMedCrossRefGoogle Scholar
  31. 31.
    Batchelor, E., Loewer, A., Mock, C. and Lahav, G. (2011) Stimulusdependent dynamics of p53 in single cells. Mol. Syst. Biol., 7, 488.PubMedGoogle Scholar
  32. 32.
    Pelkmans, L. (2012) Cell Biology. Using cell-to-cell variability—a new era in molecular biology. Science, 336, 425–426.Google Scholar
  33. 33.
    Wang, C., Tian, Y. W., Wu, X. W. and Zhao, X. Z. (1990) Genetic polymorphisms of HLA class III and GLO1 in Chinese Yao nationality. Gene Geography: A Computerized Bulletin on Human Gene Frequencies 4, 29–34.Google Scholar
  34. 34.
    Wong, J. V., Yao, G. A., Nevins, J. R. and You, L. C. (2011) Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC. Mol. Cell, 41, 275–285.PubMedCrossRefGoogle Scholar
  35. 35.
    Austin, D.W., Allen, M. S., McCollum, J. M., Dar, R. D., Wilgus, J. R., Sayler, G. S., Samatova, N. F., Cox, C. D. and Simpson, M. L. (2006) Gene network shaping of inherent noise spectra. Nature, 439, 608–611.PubMedCrossRefGoogle Scholar
  36. 36.
    Lestas, I., Vinnicombe, G. and Paulsson, J. (2010) Fundamental limits on the suppression of molecular fluctuations. Nature, 467, 174–178.PubMedCrossRefGoogle Scholar
  37. 37.
    Volfson, D., Marciniak, J., Blake, W. J., Ostroff, N., Tsimring, L. S. and Hasty, J. (2006) Origins of extrinsic variability in eukaryotic gene expression. Nature, 439, 861–864.PubMedCrossRefGoogle Scholar
  38. 38.
    Bialek, W. and Setayeshgar, S. (2008) Cooperativity, sensitivity, and noise in biochemical signaling. Phys. Rev. Lett., 100, 258101.PubMedCrossRefGoogle Scholar
  39. 39.
    Friedman, N., Cai, L. and Xie, X. S. (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett., 97, 168302.PubMedCrossRefGoogle Scholar
  40. 40.
    Elf, J., Li, G. W. and Xie, X. S. (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316, 1191–1194.PubMedCrossRefGoogle Scholar
  41. 41.
    Pedraza, J. M. and Paulsson, J. (2008) Effects of molecular memory and bursting on fluctuations in gene expression. Science, 319, 339–343.PubMedCrossRefGoogle Scholar
  42. 42.
    Pedraza, J. M. and van Oudenaarden, A. (2005) Noise propagation in gene networks. Science, 307, 1965–1969.PubMedCrossRefGoogle Scholar
  43. 43.
    Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U. and Naef, F. (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science, 332, 472–474.PubMedCrossRefGoogle Scholar
  44. 44.
    To, T.L. and Maheshri, N. (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science, 327, 1142–1145.PubMedCrossRefGoogle Scholar
  45. 45.
    Hallen, M., Li, B. C., Tanouchi, Y., Tan, C. E. M., West, M. and You, L. C. (2011) Computation of steady-state probability distributions in stochastic models of cellular networks. PLoS Comput. Biol., 7, e1002209.PubMedCrossRefGoogle Scholar
  46. 46.
    Ma, R., Wang, J. C., Hou, Z. H. and Liu, H. Y. (2012) Small-number effects: a third stable state in a genetic bistable toggle switch. Phys. Rev. Lett., 109, 248107.PubMedCrossRefGoogle Scholar
  47. 47.
    Cağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J. and Süel, G. M. (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 139, 512–522.PubMedCrossRefGoogle Scholar
  48. 48.
    Johnston, R. J. Jr, Otake, Y., Sood, P., Vogt, N., Behnia, R., Vasiliauskas, D., McDonald, E., Xie, B., Koenig, S., Wolf, R., et al. (2011) Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye. Cell, 145, 956–968.PubMedCrossRefGoogle Scholar
  49. 49.
    Dobrzynski, M. and Bruggeman, F. J. (2009) Elongation dynamics shape bursty transcription and translation. Proc. Natl. Acad. Sci. USA, 106, 2583–2588.PubMedCrossRefGoogle Scholar
  50. 50.
    Tan, C., Marguet, P. and You, L. C. (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol., 5, 842–848.PubMedCrossRefGoogle Scholar
  51. 51.
    Munsky, B. and Khammash, M. (2010) Identification from stochastic cell-to-cell variation: a genetic switch case study. IET Syst. Biol., 4, 356–366.PubMedCrossRefGoogle Scholar
  52. 52.
    Warmflash, A. and Dinner, A. R. (2008) Signatures of combinatorial regulation in intrinsic biological noise. Proc. Natl. Acad. Sci. USA, 105, 17262–17267.PubMedCrossRefGoogle Scholar
  53. 53.
    Maienschein-Cline, M., Warmflash, A. and Dinner, A. R. (2010) Defining cooperativity in gene regulation locally through intrinsic noise. IET Syst. Biol., 4, 379–392.PubMedCrossRefGoogle Scholar
  54. 54.
    Singh, A., Razooky, B. S., Dar, R. D. and Weinberger, L. S. (2012) Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. Mol. Syst. Biol., 8, 607.PubMedCrossRefGoogle Scholar
  55. 55.
    Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y. and Barkai, N. (2006) Noise in protein expression scales with natural protein abundance. Nat. Genet., 38, 636–643.PubMedCrossRefGoogle Scholar
  56. 56.
    Lopes, F. M., de Oliveira, E. A. and Cesar, R. M. Jr. (2011) Inference of gene regulatory networks from time series by Tsallis entropy. BMC Syst. Biol., 5, 61.PubMedCrossRefGoogle Scholar
  57. 57.
    Bendall, S. C. and Nolan, G. P. (2012) From single cells to deep phenotypes in cancer. Nat. Biotechnol., 30, 639–647.PubMedCrossRefGoogle Scholar
  58. 58.
    Munsky, B., Trinh, B. and Khammash, M. (2009) Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol., 5, 318.PubMedCrossRefGoogle Scholar
  59. 59.
    Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P. and Allgöwer, F. (2011) Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinformatics, 12, 125.PubMedCrossRefGoogle Scholar
  60. 60.
    Bonassi, F. V., You, L. C. and West, M. (2011) Bayesian learning from marginal data in bionetwork models. Stat. Appl. Genet. Mol., 10.Google Scholar
  61. 61.
    Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J. and Koeppl, H. (2012) Moment-based inference predicts bimodality in transient gene expression. Proc. Natl. Acad. Sci. USA, 109, 8340–8345.PubMedCrossRefGoogle Scholar
  62. 62.
    Lim, C. A., Yao, F., Wong, J. J. Y., George, J., Xu, H., Chiu, K. P., Sung, W. K., Lipovich, L., Vega, V. B., Chen, J., et al. (2007) Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Mol. Cell, 27, 622–635.PubMedCrossRefGoogle Scholar
  63. 63.
    Lillacci, G. and Khammash, M. (2012) A distribution-matching method for parameter estimation and model selection in computational biology. International Journal of Robust and Nonlinear Control, 22, 1065–1081.CrossRefGoogle Scholar
  64. 64.
    Kügler, P. (2012) Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS One, 7, e43001.PubMedCrossRefGoogle Scholar
  65. 65.
    August, E. (2012) Using noise for model-testing. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 19, 968–977.CrossRefGoogle Scholar
  66. 66.
    Cox, C. D., McCollum, J. M., Allen, M. S., Dar, R. D. and Simpson, M. L. (2008) Using noise to probe and characterize gene circuits. Proc. Natl. Acad. Sci. USA, 105, 10809–10814.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim, D., Debusschere, B. J. and Najm, H. N. (2007) Spectral methods for parametric sensitivity in stochastic dynamical systems. Biophys. J., 92, 379–393.PubMedCrossRefGoogle Scholar
  68. 68.
    Ren, J., Wang, W. X., Li, B. and Lai, Y. C. (2010) Noise bridges dynamical correlation and topology in coupled oscillator networks. Phys. Rev. Lett., 104, 058701.PubMedCrossRefGoogle Scholar
  69. 69.
    Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N. and Altan-Bonnet, G. (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science, 321, 1081–1084.PubMedCrossRefGoogle Scholar
  70. 70.
    Brock, A., Chang, H. and Huang, S. (2009) Non-genetic heterogeneity-a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet., 10, 336–342.PubMedCrossRefGoogle Scholar
  71. 71.
    Creixell, P., Schoof, E. M., Erler, J. T. and Linding, R. (2012) Navigating cancer network attractors for tumor-specific therapy. Nat. Biotechnol., 30, 842–848.PubMedCrossRefGoogle Scholar
  72. 72.
    Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., et al. (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 366, 883–892.PubMedCrossRefGoogle Scholar
  73. 73.
    Irish, J. M., Hovland, R., Krutzik, P. O., Perez, O. D., Bruserud, O., Gjertsen, B. T. and Nolan, G. P. (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell, 118, 217–228.PubMedCrossRefGoogle Scholar
  74. 74.
    Kotecha, N., Flores, N. J., Irish, J. M., Simonds, E. F., Sakai, D. S., Archambeault, S., Diaz-Flores, E., Coram, M., Shannon, K. M., Nolan, G. P., et al. (2008) Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell, 14, 335–343.PubMedCrossRefGoogle Scholar
  75. 75.
    Hayashi, M., Okabe-Kado, J. and Hozumi, M. (1994) Flow-cytometric analysis of in vivo induction of differentiation of WEHI-3B myelomonocytic leukemia cells by recombinant granulocyte colonystimulating factor. Exp. Hematol., 22, 393–398.PubMedGoogle Scholar
  76. 76.
    Marusyk, A., Almendro, V. and Polyak, K. (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer, 12, 323–334.PubMedCrossRefGoogle Scholar
  77. 77.
    Li, W., Cui, L. B. and Ng, M. K. (2012) On computation of the steadystate probability distribution of probabilistic Boolean networks with gene perturbation. J. Comput. Appl. Math., 236, 4067–4081.CrossRefGoogle Scholar
  78. 78.
    Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633–644.PubMedCrossRefGoogle Scholar
  79. 79.
    Krutzik, P. O., Crane, J. M., Clutter, M. R. and Nolan, G. P. (2008) High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol., 4, 132–142.PubMedCrossRefGoogle Scholar
  80. 80.
    Ghimire, P., Wu, G. Y. and Zhu, L. (2010) Primary esophageal lymphoma in immunocompetent patients: two case reports and literature review. World Journal of Radiology, 2, 334–338.PubMedCrossRefGoogle Scholar
  81. 81.
    Song, Y., Yang, Z., Ke, Z., Yao, Y., Hu, X., Sun, Y., Li, H., Yin, J. and Zeng, C. (2012) Expression of 14-3-3gamma in patients with breast cancer: correlation with clinicopathological features and prognosis. Cancer Epidemiology, 36, 533–536.PubMedCrossRefGoogle Scholar
  82. 82.
    Bosch, J., Gerstein, H. C., Dagenais, G. R., Díaz, R., Dyal, L., Jung, H., Maggiono, A. P., Probstfield, J., Ramachandran, A., Riddle, M. C., et al. and the ORIGIN Trial Investigators. (2012) n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med., 367, 309–318.PubMedCrossRefGoogle Scholar
  83. 83.
    Gerstein, H. C., Bosch, J., Dagenais, G. R., Díaz, R., Jung, H., Maggioni, A. P., Pogue, J., Probstfield, J., Ramachandran, A., Riddle, M. C., et al. and the ORIGIN Trial Investigators. (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med., 367, 319–328.PubMedCrossRefGoogle Scholar
  84. 84.
    Canham, M. A., Sharov, A. A., Ko, M. S. and Brickman, J. M. (2010) Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLoS Biol., 8, e1000379.PubMedCrossRefGoogle Scholar
  85. 85.
    Novershtern, N., Subramanian, A., Lawton, L. N., Mak, R. H., Haining, W. N., McConkey, M. E., Habib, N., Yosef, N., Chang, C. Y., Shay, T., et al. (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell, 144, 296–309.PubMedCrossRefGoogle Scholar
  86. 86.
    Caie, P. D., Walls, R. E., Ingleston-Orme, A., Daya, S., Houslay, T., Eagle, R., Roberts, M. E., and Carragher, N. O. (2010) High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther., 9, 1913–1926.PubMedCrossRefGoogle Scholar
  87. 87.
    Sutherland, J. J., Low, J., Blosser, W., Dowless, M., Engler, T. A. and Stancato, L. F. (2011) A robust high-content imaging approach for probing the mechanism of action and phenotypic outcomes of cell-cycle modulators. Mol. Cancer Ther., 10, 242–254.PubMedCrossRefGoogle Scholar
  88. 88.
    Elghetany, M. T. (2002) Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood, 99, 391–392.PubMedCrossRefGoogle Scholar
  89. 89.
    Stetler-Stevenson, M., Arthur, D. C., Jabbour, N., Xie, X. Y., Molldrem, J., Barrett, A. J., Venzon, D. and Rick, M. E. (2001) Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood, 98, 979–987.PubMedCrossRefGoogle Scholar
  90. 90.
    Finn, W. G., Harrington, A. M., Carter, K. M., Raich, R., Kroft, S. H. and Hero, A. O. 3rd. (2011) Immunophenotypic signatures of benign and dysplastic granulopoiesis by cytomic profiling. Cytometry B Clin. Cytom., 80, 282–290.PubMedGoogle Scholar
  91. 91.
    Stachurski, D., Smith, B. R., Pozdnyakova, O., Andersen, M., Xiao, Z., Raza, A., Woda, B. A., and Wang, S. A. (2008) Flow cytometric analysis of myelomonocytic cells by a pattern recognition approach is sensitive and specific in diagnosing myelodysplastic syndrome and related marrow diseases: emphasis on a global evaluation and recognition of diagnostic pitfalls. Leuk. Res., 32, 215–224.PubMedCrossRefGoogle Scholar
  92. 92.
    Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T. I., Maier, L. M., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Hafler, D. A., et al. (2009) Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA, 106, 8519–8524.PubMedCrossRefGoogle Scholar
  93. 93.
    Finn, W. G., Carter, K. M., Raich, R., Stoolman, L. M. and Hero, A. O. (2009) Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Cytometry B Clin. Cytom., 76, 1–7.PubMedGoogle Scholar
  94. 94.
    Rogers, W. T. and Holyst, H. A. (2009) FlowFP: A bioconductor package for fingerprinting flow cytometric data. Adv. Bioinformatics, 193947.Google Scholar
  95. 95.
    Rogers, W. T., Moser, A. R., Holyst, H. A., Bantly, A., Mohler, E. R., 3rd, Scangas, G. and Moore, J. S. (2008) Cytometric fingerprinting: quantitative characterization of multivariate distributions. Cytometry. Part A: the Journal of the International Society for Analytical Cytology, 73, 430–441.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Center for Systems BiologyDuke UniversityDurhamUSA
  3. 3.Institute for Genome Sciences and PolicyDuke UniversityDurhamUSA

Personalised recommendations