Quantitative Biology

, Volume 1, Issue 1, pp 32–49 | Cite as

From Phage lambda to human cancer: endogenous molecular-cellular network hypothesis

Review

Abstract

Experimental evidences and theoretical analyses have amply suggested that in cancer genesis and progression genetic information is very important but not the whole. Nevertheless, “cancer as a disease of the genome” is still currently the dominant doctrine. With such a background and based on the fundamental properties of biological systems, a new endogenous molecular-cellular network theory for cancer was recently proposed by us. Similar proposals were also made by others. The new theory attempts to incorporate both genetic and environmental effects into one single framework, with the possibility to give a quantitative and dynamical description. It is asserted that the complex regulatory machinery behind biological processes may be modeled by a nonlinear stochastic dynamical system similar to a noise perturbed Morse-Smale system. Both qualitative and quantitative descriptions may be obtained. The dynamical variables are specified by a set of endogenous molecular-cellular agents and the structure of the dynamical system by the interactions among those biological agents. Here we review this theory from a pedagogical angle which emphasizes the role of modularization, hierarchy and autonomous regulation. We discuss how the core set of assumptions is exemplified in detail in one of the simple, important and well studied model organisms, Phage lambda. With this concrete and quantitative example in hand, we show that the application of the hypothesized theory in human cancer, such as hepatocellular carcinoma (HCC), is plausible, and that it may provide a set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care.

References

  1. 1.
    Kumar, V., Robbins, S., Zhai, Q. and Chen, J. (2009) Textbook of Pathology. Peking University Medical Press.Google Scholar
  2. 2.
    Hajdu, S. I. (2011) A note from history: landmarks in history of cancer, part 1. Cancer, 117, 1097–1102.PubMedCrossRefGoogle Scholar
  3. 3.
    Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678–684.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRefGoogle Scholar
  5. 5.
    Nowell, P. C. (1976) The clonal evolution of tumor cell populations. Science, 194, 23–28.PubMedCrossRefGoogle Scholar
  6. 6.
    Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313.PubMedCrossRefGoogle Scholar
  7. 7.
    Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., et al. (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873–885.PubMedCrossRefGoogle Scholar
  8. 8.
    Land, H., Parada, L. F. and Weinberg, R. A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304, 596–602.PubMedCrossRefGoogle Scholar
  9. 9.
    Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell, 81, 323–330.PubMedCrossRefGoogle Scholar
  10. 10.
    Paget, S. (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev., 8, 98–101.PubMedGoogle Scholar
  11. 11.
    Fidler, I. J. and Poste, G. (2008) The “seed and soil” hypothesis revisited. Lancet Oncol., 9, 808.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, X., Ouyang, H., Yamamoto, Y., Kumar, P. A., Wei, T. S., Dagher, R., Vincent, M., Lu, X., Bellizzi, A. M., Ho, K. Y., et al. (2011) Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell, 145, 1023–1035.PubMedCrossRefGoogle Scholar
  13. 13.
    Koshland, D. E. Jr, Goldbeter, A. and Stock, J. B. (1982) Amplification and adaptation in regulatory and sensory systems. Science, 217, 220–225.PubMedCrossRefGoogle Scholar
  14. 14.
    Ao, P. (2009) Global view of bionetwork dynamics: adaptive landscape. J. Genet. Genomics, 36, 63–73.PubMedCrossRefGoogle Scholar
  15. 15.
    Li, F., Long, T., Lu, Y., Ouyang, Q. and Tang, C. (2004) The yeast cellcycle network is robustly designed. Proc. Natl. Acad. Sci. USA, 101, 4781–4786.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu, X. M., Yin, L., Hood, L. and Ao, P. (2004) Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis. J. Bioinform. Comput. Biol., 2, 785–817.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu, X., Yin, L., Hood, L., Galas, D. and Ao, P. (2007) Efficiency, robustness, and stochasticity of gene regulatory networks in systems biology: λ switch as a working example. In Choi, S. (ed.), Introduction to Systems Biology. Humana Press, 336–371.CrossRefGoogle Scholar
  18. 18.
    Bizzarri, M., Giuliani, A., Cucina, A., D’Anselmi, F., Soto, A. M. and Sonnenschein, C. (2011) Fractal analysis in a systems biology approach to cancer. Semin. Cancer Biol., 21, 175–182.PubMedCrossRefGoogle Scholar
  19. 19.
    Pastan, I. and Gottesman, M. (1987) Multiple-drug resistance in human cancer. N. Engl. J. Med., 316, 1388–1393.PubMedCrossRefGoogle Scholar
  20. 20.
    Gimbrone, M. A. Jr, Leapman, S. B., Cotran, R. S. and Folkman, J. (1972) Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med., 136, 261–276.PubMedCrossRefGoogle Scholar
  21. 21.
    Hartwell, L. H., Hopfield, J. J., Leibler, S. and Murray, A. W. (1999) From molecular to modular cell biology. Nature, 402, C47–C52.PubMedCrossRefGoogle Scholar
  22. 22.
    Akhurst, R. J. and Derynck, R. (2001) TGF-β signaling in cancer-a double-edged sword. Trends Cell Biol., 11, S44–S51.PubMedGoogle Scholar
  23. 23.
    Feng, G.-S. (2012) Conflicting roles of molecules in hepatocarcinogenesis: paradigm or paradox. Cancer Cell, 21, 150–154.PubMedCrossRefGoogle Scholar
  24. 24.
    Kauffman, S. (2008) Control circuits for determination and transdetermination: interpreting positional information in a binary epigenetic code. In Porter, R. and Rivers J. (eds.), Ciba Foundation Symposium 29 — Cell Patterning. John Wiley & Sons, Ltd., 201–221.CrossRefGoogle Scholar
  25. 25.
    Auffray, C., Chen, Z. and Hood, L. (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med., 1, 2.PubMedCrossRefGoogle Scholar
  26. 26.
    Chalancon, G., Ravarani, C. N. J., Balaji, S., Martinez-Arias, A., Aravind, L., Jothi, R. and Babu, M. M. (2012) Interplay between gene expression noise and regulatory network architecture. Trends Genet., 28, 221–232.PubMedCrossRefGoogle Scholar
  27. 27.
    Hood, L. and Flores, M. (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol., 29, 613–624.CrossRefGoogle Scholar
  28. 28.
    Vital-Lopez, F., Memišević, V. and Dutta, B. (2012) Tutorial on biological networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2, 298–325.CrossRefGoogle Scholar
  29. 29.
    Ao, P., Galas, D., Hood, L., Yin, L. and Zhu, X. M. (2010) Towards predictive stochastic dynamical modeling of cancer genesis and progression. Interdiscip. Sci., 2, 140–144.PubMedCrossRefGoogle Scholar
  30. 30.
    Nurse, P. (2000) A long twentieth century of the cell cycle and beyond. Cell, 100, 71–78.PubMedCrossRefGoogle Scholar
  31. 31.
    Garber, K. (2001) Beyond the Nobel Prize: cell cycle research offers new view of cancer. J. Natl. Cancer Inst., 93, 1766–1768.PubMedCrossRefGoogle Scholar
  32. 32.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X. and Hui, L. (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475, 386–389.PubMedCrossRefGoogle Scholar
  34. 34.
    Tyson, J. J. and Novak, B. (2008) Temporal organization of the cell cycle. Curr. Biol., 18, R759–R768.PubMedCrossRefGoogle Scholar
  35. 35.
    Spencer, S. L. and Sorger, P. K. (2011) Measuring and modeling apoptosis in single cells. Cell, 144, 926–939.PubMedCrossRefGoogle Scholar
  36. 36.
    Meyer, B. J., Maurer, R. and Ptashne, M. (1980) Gene regulation at the right operator (OR) of bacteriophage λ. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. J. Mol. Biol., 139, 163–194.PubMedCrossRefGoogle Scholar
  37. 37.
    Yuh, C. H., Bolouri, H. and Davidson, E. H. (1998) Genomic cisregulatory logic: experimental and computational analysis of a sea urchin gene. Science, 279, 1896–1902.PubMedCrossRefGoogle Scholar
  38. 38.
    Baker, S. G. and Kramer, B. S. (2011) Systems biology and cancer: promises and perils. Prog. Biophys. Mol. Biol., 106, 410–413.PubMedCrossRefGoogle Scholar
  39. 39.
    Alberts, B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P. (2007) Molecular Biology of the Cell (5th ed.). Garland Science.Google Scholar
  40. 40.
    Smale, S., Hirsch, M. and Devaney, R. (2003) Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Science.Google Scholar
  41. 41.
    Bar-Yam, Y., Harmon, D. and de Bivort, B. (2009) Attractors and democratic dynamics. Science, 323, 1016–1017.PubMedCrossRefGoogle Scholar
  42. 42.
    Ao, P. (2005) Laws in Darwinian evolutionary theory. Phys. Life Rev., 2, 117–156.CrossRefGoogle Scholar
  43. 43.
    Schäfer, M. and Werner, S. (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol., 9, 628–638.PubMedCrossRefGoogle Scholar
  44. 44.
    Williams, C. S., Mann, M. and DuBois, R. N. (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18, 7908–7916.PubMedCrossRefGoogle Scholar
  45. 45.
    Neidhardt, F. (1987) Escherichia Coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology.Google Scholar
  46. 46.
    Cairns, J., Stent, G. S. and Watson, J. D. (2007) Phage and the Origins of Molecular Biology (The Centennial Edition). Cold Spring Harbor Laboratory Press.Google Scholar
  47. 47.
    Ptashne, M. (2004) A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press.Google Scholar
  48. 48.
    Shea, M. A. and Ackers, G. K. (1985) The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J. Mol. Biol., 181, 211–230.PubMedCrossRefGoogle Scholar
  49. 49.
    Waddington, C. (1957) The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. Allen & Unwin.Google Scholar
  50. 50.
    Wright, S. (1982) The shifting balance theory and macroevolution. Annu. Rev. Genet., 16, 1–19.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang, J., Zhang, K., Xu, L. and Wang, E. (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA, 108, 8257–8262.PubMedCrossRefGoogle Scholar
  52. 52.
    Cao, Y., Lu, H. M. and Liang, J. (2010) Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda. Proc. Natl. Acad. Sci. USA, 107, 18445–18450.PubMedCrossRefGoogle Scholar
  53. 53.
    Bryngelson, J. D., Onuchic, J. N., Socci, N. D. and Wolynes, P. G. (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Struct. Func. Bioinfo., 21, 167–195..CrossRefGoogle Scholar
  54. 54.
    Ao, P., Kwon, C. and Qian, H. (2007) On the existence of potential landscape in the evolution of complex systems. Complexity, 12, 19–27.CrossRefGoogle Scholar
  55. 55.
    Yuan, R. S. and Ao, P. (2012) Beyond Itô versus Stratonovich. J. Stat. Mech., 2012, P07010.CrossRefGoogle Scholar
  56. 56.
    Tian, W., Zhu, H., Lei, X. and Ao, P. (2011) Extrinsic vs. intrinsic noises in Phage lambda genetic switch. In Proceedings of 2011 IEEE Conference on Systems Biology. 67–71.CrossRefGoogle Scholar
  57. 57.
    El-Serag, H. B. and Rudolph, K. L. (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 132, 2557–2576.PubMedCrossRefGoogle Scholar
  58. 58.
    Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin., 55, 74–108.PubMedCrossRefGoogle Scholar
  59. 59.
    Monga, S. and Cagle, P. (2010) Molecular Pathology of Liver Diseases. Springer.Google Scholar
  60. 60.
    Michalopoulos, G. (2011) Liver regeneration. In 机构Monga, S. P. S. (ed.), Molecular Pathology of Liver Diseases. Springer US, 5, 261–278CrossRefGoogle Scholar
  61. 61.
    Higgins, G. M. (1931) Experimental pathology of the liver: I. Restoration of the liver of the while rat following surgical removal. Arch. Pathol. (Chic), 12, 186–202.Google Scholar
  62. 62.
    Grisham, J. W. (1962) A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res., 22, 842–849.PubMedGoogle Scholar
  63. 63.
    Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T., Roesler, W. J. and Timchenko, N. A. (2001) C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell, 8, 817–828.PubMedCrossRefGoogle Scholar
  64. 64.
    Ilyin, G. P., Glaise, D., Gilot, D., Baffet, G. and Guguen-Guillouzo, C. (2003) Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am. J. Physiol. Gastrointest. Liver Physiol., 285, G115–G127.PubMedGoogle Scholar
  65. 65.
    Papakyriakou, P., Tzardi, M., Valatas, V., Kanavaros, P., Karydi, E., Notas, G., Xidakis, C. and Kouroumalis, E. (2002) Apoptosis and apoptosis related proteins in chronic viral liver disease. Apoptosis, 7, 133–141.PubMedCrossRefGoogle Scholar
  66. 66.
    Wilson, N. S., Dixit, V. and Ashkenazi, A. (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol., 10, 348–355.PubMedCrossRefGoogle Scholar
  67. 67.
    Green, D. R. and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science, 305, 626–629.PubMedCrossRefGoogle Scholar
  68. 68.
    Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science, 281, 1322–1326.PubMedCrossRefGoogle Scholar
  69. 69.
    Walensky, L. D., Pitter, K., Morash, J., Oh, K. J., Barbuto, S., Fisher, J., Smith, E., Verdine, G. L. and Korsmeyer, S. J. (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell, 24, 199–210.PubMedCrossRefGoogle Scholar
  70. 70.
    Jost, P. J., Grabow, S., Gray, D., McKenzie, M. D., Nachbur, U., Huang, D. C., Bouillet, P., Thomas, H. E., Borner, C., Silke, J., et al. (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature, 460, 1035–1039.PubMedCrossRefGoogle Scholar
  71. 71.
    Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B. and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 292, 727–730.PubMedCrossRefGoogle Scholar
  72. 72.
    Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhao, Z., Yang, P., Eckert, R. L. and Reece, E. A. (2009) Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Res. B Dev. Reprod. Toxicol., 86, 72–77.PubMedCrossRefGoogle Scholar
  74. 74.
    Trautwein, C., Böker, K. and Manns, M. P. (1994) Hepatocyte and immune system: acute phase reaction as a contribution to early defence mechanisms. Gut, 35, 1163–1166.PubMedCrossRefGoogle Scholar
  75. 75.
    Diehl, A. M. (2000) Cytokine regulation of liver injury and repair. Immunol. Rev., 174, 160–171.PubMedCrossRefGoogle Scholar
  76. 76.
    Ben-Neriah, Y. and Karin, M. (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 12, 715–723.PubMedCrossRefGoogle Scholar
  77. 77.
    Schwabe, R. F. and Brenner, D. A. (2006) Mechanisms of Liver Injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol., 290, G583–G589.PubMedCrossRefGoogle Scholar
  78. 78.
    Sakurai, T., He, G., Matsuzawa, A., Yu, G.-Y., Maeda, S., Hardiman, G. and Karin, M. (2008) Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell, 14, 156–165.PubMedCrossRefGoogle Scholar
  79. 79.
    Bromberg, J. and Wang, T. C. (2009) Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell, 15, 79–80.PubMedCrossRefGoogle Scholar
  80. 80.
    Louis, H., Le Moine, O., Goldman, M. and Devière, J. (2003) Modulation of liver injury by interleukin-10. Acta Gastroenterol. Belg., 66, 7–14.PubMedGoogle Scholar
  81. 81.
    Cairns, R. A., Harris, I. S. and Mak, T. W. (2011) Regulation of cancer cell metabolism. Nat. Rev. Cancer, 11, 85–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 1029–1033.PubMedCrossRefGoogle Scholar
  83. 83.
    Semenza, G. (2010) HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev., 20, 51–56.PubMedCrossRefGoogle Scholar
  84. 84.
    Lau, C. K., Yang, Z. F., Ho, D.W., Ng, M. N., Yeoh, G. C., Poon, R. T. and Fan, S. T. (2009) An Akt/hypoxia-inducible factor-1α/plateletderived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin. Cancer Res., 15, 3462–3471.PubMedCrossRefGoogle Scholar
  85. 85.
    Adams, R. H. and Alitalo, K. (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 8, 464–478.PubMedCrossRefGoogle Scholar
  86. 86.
    Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435–439.PubMedCrossRefGoogle Scholar
  87. 87.
    Massagué, J. (1998) TGF-β signal transduction. Annu. Rev. Biochem., 67, 753–791.PubMedCrossRefGoogle Scholar
  88. 88.
    Lu, Z., Ghosh, S., Wang, Z. and Hunter, T. (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.PubMedCrossRefGoogle Scholar
  89. 89.
    Odom, D. T., Dowell, R. D., Jacobsen, E. S., Nekludova, L., Rolfe, P. A., Danford, T.W., Gifford, D. K., Fraenkel, E., Bell, G. I. and Young, R. A. (2006) Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol., 2, 2006.0017.PubMedCrossRefGoogle Scholar
  90. 90.
    Lu, T. T., Makishima, M., Repa, J. J., Schoonjans, K., Kerr, T. A., Auwerx, J. and Mangelsdorf, D. J. (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell, 6, 507–515.PubMedCrossRefGoogle Scholar
  91. 91.
    Vellela, M. and Qian, H. (2009) Stochastic dynamics and nonequilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. R. Soc. Interface, 6, 925–940.PubMedCrossRefGoogle Scholar
  92. 92.
    Rosenfeld, S. (2011) Mathematical descriptions of biochemical networks: stability, stochasticity, evolution. Prog. Biophys. Mol. Biol., 106, 400–409.PubMedCrossRefGoogle Scholar
  93. 93.
    Villarreal, C., Padilla-Longoria, P., and Alvarez-Buylla, E. R. (2012) General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks. Phys. Rev. Lett., 109, 118102.PubMedCrossRefGoogle Scholar
  94. 94.
    Xu, X. R., Huang, J., Xu, Z. G., Qian, B. Z., Zhu, Z. D., Yan, Q., Cai, T., Zhang, X., Xiao, H. S., Qu, J., et al. (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl. Acad. Sci. USA, 98, 15089–15094.PubMedCrossRefGoogle Scholar
  95. 95.
    Yang, W., Yan, H. X., Chen, L., Liu, Q., He, Y. Q., Yu, L. X., Zhang, S. H., Huang, D. D., Tang, L., Kong, X. N., et al. (2008) Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res., 68, 4287–4295.PubMedCrossRefGoogle Scholar
  96. 96.
    Holmes, P. (2005) Ninety plus thirty years of nonlinear dynamics: less is more and more is different. Int. J. Bifurcat. Chaos, 15, 2703–2716.CrossRefGoogle Scholar
  97. 97.
    Ao, P. (2007) Darwinian dynamics implies developmental ascendency. Biol. Theory, 2, 113–115.CrossRefGoogle Scholar
  98. 98.
    Ao, P. (2007) Orders of magnitude change in phenotype rate caused by mutation. Cell. Oncol., 29, 67–69.PubMedGoogle Scholar
  99. 99.
    Lee, L., Yin, L., Zhu, X. and Ao, P. (2007) Generic enzymatic rate equation under living conditions. J. Biol. Syst., 15, 495–514.CrossRefGoogle Scholar
  100. 100.
    Ao, P., Lee, L. W., Lidstrom, M. E., Yin, L. and Zhu, X. (2008) Towards kinetic modeling of global metabolic networks: methylobacterium extorquens AM1 growth as validation. Chin. J. Biotechnol., 24, 980–994.CrossRefGoogle Scholar
  101. 101.
    Liu, C., Fan, D., Shi, Y. and Zhou, Q. (2012) A glimpse of enzymology within the idea of systems. Sci. China Life Sci., 55, 826–833.PubMedCrossRefGoogle Scholar
  102. 102.
    Huang, S. (2011) On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin. Cancer Biol., 21, 183–199.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou, J. X., Aliyu, M. D., Aurell, E. and Huang, S. (2012) Quasipotential landscape in complex multi-stable systems. J. R. Soc. Interface, 9, 3539–3553.PubMedCrossRefGoogle Scholar
  104. 104.
    Baverstock, K. and Karotki, A. V. (2011) Towards a unifying theory of late stochastic effects of ionizing radiation. Mutat. Res., 718, 1–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Davies, P. C. W. and Lineweaver, C. H. (2011) Cancer tumors as Metazoa 1.0: apping genes of ancient ancestors. Phys. Biol., 8, 015001.PubMedCrossRefGoogle Scholar
  106. 106.
    Vincent, M. D. (2011) Cancer: beyond speciation. Adv. Cancer Res., 112, 283–350.PubMedCrossRefGoogle Scholar
  107. 107.
    Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., et al. (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA, 108, 7950–7955.PubMedCrossRefGoogle Scholar
  108. 108.
    Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633–644.PubMedCrossRefGoogle Scholar
  109. 109.
    Heng, H. H. Q., Liu, G., Stevens, J. B., Bremer, S. W., Ye, K. J., Abdallah, B. Y., Horne, S. D. and Ye, C. J. (2011) Decoding the genome beyond sequencing: the new phase of genomic research. Genomics, 98, 242–252.PubMedCrossRefGoogle Scholar
  110. 110.
    Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K.-K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100.PubMedCrossRefGoogle Scholar
  111. 111.
    Yamanaka, S. (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature, 460, 49–52.PubMedCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2013

Authors and Affiliations

  • Gaowei Wang
    • 1
    • 2
  • Xiaomei Zhu
    • 3
  • Leroy Hood
    • 4
  • Ping Ao
    • 1
    • 2
    • 5
  1. 1.Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.GenMath, Corp.SeattleUSA
  4. 4.Institute for Systems BiologySeattleUSA
  5. 5.Department of PhysicsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations