Quantitative Biology

, Volume 1, Issue 1, pp 71–90 | Cite as

Personal genomes, quantitative dynamic omics and personalized medicine

Review

Abstract

The rapid technological developments following the Human Genome Project have made possible the availability of personalized genomes. As the focus now shifts from characterizing genomes to making personalized disease associations, in combination with the availability of other omics technologies, the next big push will be not only to obtain a personalized genome, but to quantitatively follow other omics. This will include transcriptomes, proteomes, metabolomes, antibodyomes, and new emerging technologies, enabling the profiling of thousands of molecular components in individuals. Furthermore, omics profiling performed longitudinally can probe the temporal patterns associated with both molecular changes and associated physiological health and disease states. Such data necessitates the development of computational methodology to not only handle and descriptively assess such data, but also construct quantitative biological models. Here we describe the availability of personal genomes and developing omics technologies that can be brought together for personalized implementations and how these novel integrated approaches may effectively provide a precise personalized medicine that focuses on not only characterization and treatment but ultimately the prevention of disease.

References

  1. 1.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMedCrossRefGoogle Scholar
  2. 2.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001) The sequence of the human genome. Science, 291, 1304–1351.PubMedCrossRefGoogle Scholar
  3. 3.
    International Human Genome Sequencing Consortium. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRefGoogle Scholar
  4. 4.
    Wang, J., Wang, W., Li, R., Li, Y., Tian, G., Goodman, L., Fan, W., Zhang, J., Li, J., Zhang, J., et al. (2008) The diploid genome sequence of an Asian individual. Nature, 456, 60–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T., et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876.PubMedCrossRefGoogle Scholar
  7. 7.
    Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness, E. F., Denisov, G., et al. (2007) The diploid genome sequence of an individual human. PLoS Biol., 5, e254.PubMedCrossRefGoogle Scholar
  8. 8.
    Snyder, M., Du, J. and Gerstein, M. (2010) Personal genome sequencing: current approaches and challenges. Genes Dev., 24, 423–431.PubMedCrossRefGoogle Scholar
  9. 9.
    Mardis, E. R. (2011) A decade’s perspective on DNA sequencing technology. Nature, 470, 198–203.PubMedCrossRefGoogle Scholar
  10. 10.
    Tucker, T., Marra, M. and Friedman, J. M. (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet., 85, 142–154.PubMedCrossRefGoogle Scholar
  11. 11.
    Ronaghi, M., Uhlén, M. and Nyrén, P. (1998) A sequencing method based on real-time pyrophosphate. Science, 281, 363, 365.PubMedCrossRefGoogle Scholar
  12. 12.
    Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M. and Nyrén, P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem., 242, 84–89.PubMedCrossRefGoogle Scholar
  13. 13.
    Nyrén, P. (2007) The history of pyrosequencing. Methods Mol. Biol., 373, 1–14..PubMedCrossRefGoogle Scholar
  14. 14.
    Nutter, R. C. (2008) New frontiers in plant functional genomics using next generation sequencing technologies. In Kahl, G. and Meksem, K. (eds.), The Handbook of Plant Functional Genomics: Concepts and Protocels. Wiley-VCH Verlag GmbH & Co. KGaA, Chapter 21, 431–446.CrossRefGoogle Scholar
  15. 15.
    Dai, M., Thompson, R. C., Maher, C., Contreras-Galindo, R., Kaplan, M. H., Markovitz, D. M., Omenn, G. and Meng, F. (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics, 11, S7.PubMedCrossRefGoogle Scholar
  16. 16.
    Pandey, V., Nutter, R. C. and Prediger, E. (2008) Applied biosystems SOLiD™ system: ligation-based sequencing. In Janitz, M. (ed.), Next Generation Genome Sequencing: Towards Personalized Medicine. Wiley-VCH Verlag GmbH & Co. KGaA, Chapter 3, 29–42.CrossRefGoogle Scholar
  17. 17.
    Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P., Nazarenko, I., Nilsen, G. B., Yeung, G., et al. (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327, 78–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Braslavsky, I., Hebert, B., Kartalov, E. and Quake, S. R. (2003) Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA, 100, 3960–3964.PubMedCrossRefGoogle Scholar
  19. 19.
    Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J. and Turner, S. W. (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol., 472, 431–455.PubMedCrossRefGoogle Scholar
  20. 20.
    Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138.PubMedCrossRefGoogle Scholar
  21. 21.
    Schadt, E. E., Turner, S. and Kasarskis, A. (2010) A window into third-generation sequencing. Hum. Mol. Genet., 19, R227–R240.PubMedCrossRefGoogle Scholar
  22. 22.
    Hayden, E. (2012) Nanopore genome sequencer makes its debut. Nature, 10.1038/nature.2012.10051.Google Scholar
  23. 23.
    Bainbridge, M. N., Wang, M., Burgess, D. L., Kovar, C., Rodesch, M. J., D’Ascenzo, M., Kitzman, J., Wu, Y. Q., Newsham, I., Richmond, T. A., et al. (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol., 11, R62.PubMedCrossRefGoogle Scholar
  24. 24.
    Clark, M. J., Chen, R., Lam, H. Y., Karczewski, K. J., Chen, R., Euskirchen, G., Butte, A. J. and Snyder, M. (2011) Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol., 29, 908–914.PubMedCrossRefGoogle Scholar
  25. 25.
    The International HapMap Consortium. (2005) A haplotype map of the human genome. Nature, 437, 1299–1320.CrossRefGoogle Scholar
  26. 26.
    The International HapMap Consortium, Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851–861.CrossRefGoogle Scholar
  27. 27.
    Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M. and Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308–311.PubMedCrossRefGoogle Scholar
  28. 28.
    Altshuler, D. and Clark, A. G. (2005) Genetics. Harvesting medical information from the human family tree. Science, 307, 1052–1053.Google Scholar
  29. 29.
    Jakobsson, M., Scholz, S.W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H. C., Szpiech, Z. A., Degnan, J. H., Wang, K., Guerreiro, R., et al. (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451, 998–1003.PubMedCrossRefGoogle Scholar
  30. 30.
    Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., et al. (2008) Genes mirror geography within Europe. Nature, 456, 98–101.PubMedCrossRefGoogle Scholar
  31. 31.
    Kidd, J. M., Gravel, S., Byrnes, J., Moreno-Estrada, A., Musharoff, S., Bryc, K., Degenhardt, J. D., Brisbin, A., Sheth, V., Chen, R., et al. (2012) Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation. Am. J. Hum. Genet., 91, 660–671.PubMedCrossRefGoogle Scholar
  32. 32.
    Galanter, J. M., Fernandez-Lopez, J. C., Gignoux, C. R., Barnholtz-Sloan, J., Fernandez-Rozadilla, C., Via, M., Hidalgo-Miranda, A., Contreras, A. V., Figueroa, L. U., Raska, P., et al. (2012) Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet., 8, e1002554.PubMedCrossRefGoogle Scholar
  33. 33.
    Bryc, K., Auton, A., Nelson, M. R., Oksenberg, J. R., Hauser, S. L., Williams, S., Froment, A., Bodo, J. M., Wambebe, C., Tishkoff, S. A., et al. (2010) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc. Natl. Acad. Sci. USA, 107, 786–791.PubMedCrossRefGoogle Scholar
  34. 34.
    Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., et al. (2006) Global variation in copy number in the human genome. Nature, 444, 444–454.PubMedCrossRefGoogle Scholar
  35. 35.
    Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T. D., Barnes, C., Campbell, P., et al. (2010) Origins and functional impact of copy number variation in the human genome. Nature, 464, 704–712.PubMedCrossRefGoogle Scholar
  36. 36.
    Alkan, C., Coe, B. P. and Eichler, E. E. (2011) Genome structural variation discovery and genotyping. Nat. Rev. Genet., 12, 363–376.PubMedCrossRefGoogle Scholar
  37. 37.
    Haraksingh, R. R., Abyzov, A., Gerstein, M., Urban, A. E. and Snyder, M. (2011) Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE, 6, e27859.PubMedCrossRefGoogle Scholar
  38. 38.
    Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., et al. (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420–426.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen, K., Wallis, J.W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P., et al. (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods, 6, 677–681.PubMedCrossRefGoogle Scholar
  40. 40.
    Korbel, J. O., Abyzov, A., Mu, X. J., Carriero, N., Cayting, P., Zhang, Z., Snyder, M. and Gerstein, M. B. (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol., 10, R23.PubMedCrossRefGoogle Scholar
  41. 41.
    Quinlan, A. R. and Hall, I. M. (2012) Characterizing complex structural variation in germline and somatic genomes. Trends Genet., 28, 43–53.PubMedCrossRefGoogle Scholar
  42. 42.
    The ENCODE Project Consortium, Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91–100.PubMedCrossRefGoogle Scholar
  44. 44.
    Ecker, J. R., Bickmore, W. A., Barroso, I., Pritchard, J. K., Gilad, Y. and Segal, E. (2012) Genomics: ENCODE explained. Nature, 489, 52–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Birney, E. (2012) The making of ENCODE: lessons for big-data projects. Nature, 489, 49–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Boyle, A. P., Hong, E. L., Hariharan, M., Cheng, Y., Schaub, M. A., Kasowski, M., Karczewski, K. J., Park, J., Hitz, B. C., Weng, S., et al. (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res., 22, 1790–1797.PubMedCrossRefGoogle Scholar
  47. 47.
    1000 Genomes Project Consortium. (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073.CrossRefGoogle Scholar
  48. 48.
    Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S. and Manolio, T. A. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA, 106, 9362–9367.PubMedCrossRefGoogle Scholar
  49. 49.
    Haack, T. B., Danhauser, K., Haberberger, B., Hoser, J., Strecker, V., Boehm, D., Uziel, G., Lamantea, E., Invernizzi, F., Poulton, J., et al. (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet., 42, 1131–1134.PubMedCrossRefGoogle Scholar
  50. 50.
    Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., van Lier, B., Arts, P., Wieskamp, N., del Rosario, M., et al. (2010) A de novo paradigm for mental retardation. Nat. Genet., 42, 1109–1112.PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., Gibbs, J. R., Brunetti, M., Gronka, S., Wuu, J., et al. (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68, 857–864.PubMedCrossRefGoogle Scholar
  52. 52.
    Bilgüvar, K., Oztürk, A. K., Louvi, A., Kwan, K. Y., Choi, M., Tatli, B., Yalnizoğlu, D., Tüysüz, B., Cağlayan, A. O., Gökben, S., et al. (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature, 467, 207–210.PubMedCrossRefGoogle Scholar
  53. 53.
    Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E. W., Nickerson, D. A., et al. (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., et al. (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790–793.PubMedCrossRefGoogle Scholar
  55. 55.
    Musunuru, K., Pirruccello, J. P., Do, R., Peloso, G. M., Guiducci, C., Sougnez, C., Garimella, K. V., Fisher, S., Abreu, J., Barry, A. J., et al. (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med., 363, 2220–2227.PubMedCrossRefGoogle Scholar
  56. 56.
    Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., et al. (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241.PubMedCrossRefGoogle Scholar
  57. 57.
    Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., Carneiro, M. O., Carter, S. L., Cibulskis, K., Erlich, R. L., et al. (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488, 106–110.PubMedCrossRefGoogle Scholar
  58. 58.
    Agrawal, N., Frederick, M. J., Pickering, C. R., Bettegowda, C., Chang, K., Li, R. J., Fakhry, C., Xie, T. X., Zhang, J., Wang, J., et al. (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333, 1154–1157.PubMedCrossRefGoogle Scholar
  59. 59.
    Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H., et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895.PubMedCrossRefGoogle Scholar
  60. 60.
    Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., et al. (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873–885.PubMedCrossRefGoogle Scholar
  61. 61.
    The Cancer Genome Atlas Research Network. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615.CrossRefGoogle Scholar
  62. 62.
    Küntzer, J., Maisel, D., Lenhof, H. P., Klostermann, S. and Burtscher, H. (2011) The Roche Cancer Genome Database 2.0. BMC Med. Genomics, 4, 43.PubMedCrossRefGoogle Scholar
  63. 63.
    Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603–607.PubMedCrossRefGoogle Scholar
  64. 64.
    Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., Varela, I., Lin, M. L., Ordóñez, G. R., Bignell, G. R., et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463, 191–196.PubMedCrossRefGoogle Scholar
  65. 65.
    Puente, X. S., Pinyol, M., Quesada, V., Conde, L., Ordóñez, G. R., Villamor, N., Escaramis, G., Jares, P., Beà, S., González-Díaz, M., et al. (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475, 101–105.PubMedCrossRefGoogle Scholar
  66. 66.
    Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J.W., Van Tine, B. A., Hoog, J., Goiffon, R. J., Goldstein, T. C., et al. (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486, 353–360.PubMedGoogle Scholar
  67. 67.
    Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., Harris, C. C., McLellan, M. D., Fulton, R. S., Fulton, L. L., et al. (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.PubMedCrossRefGoogle Scholar
  68. 68.
    Yost, S. E., Smith, E. N., Schwab, R. B., Bao, L., Jung, H., Wang, X., Voest, E., Pierce, J. P., Messer, K., Parker, B. A., et al. (2012) Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens. Nucleic Acids Res., 40, e107.PubMedCrossRefGoogle Scholar
  69. 69.
    Natrajan, R., Mackay, A., Lambros, M. B., Weigelt, B., Wilkerson, P. M., Manie, E., Grigoriadis, A., A’hern, R., van der Groep, P., Kozarewa, I., et al. (2012) A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers. J. Pathol., 227, 29–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., Dooling, D., Dunford-Shore, B. H., McGrath, S., Hickenbotham, M., et al. (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Link, D. C., Schuettpelz, L. G., Shen, D., Wang, J., Walter, M. J., Kulkarni, S., Payton, J. E., Ivanovich, J., Goodfellow, P. J., Le Beau, M., et al. (2011) Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapyrelated AML. JAMA, 305, 1568–1576.PubMedCrossRefGoogle Scholar
  72. 72.
    Dewey, F. E., Chen, R., Cordero, S. P., Ormond, K. E., Caleshu, C., Karczewski, K. J., Whirl-Carrillo, M., Wheeler, M. T., Dudley, J. T., Byrnes, J. K., et al. (2011) Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet., 7, e1002280.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen, R., Mias, G. I., Li-Pook-Than, J., Jiang, L., Lam, H. Y., Chen, R., Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., et al. (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148, 1293–1307.PubMedCrossRefGoogle Scholar
  74. 74.
    Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., et al. (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639.PubMedCrossRefGoogle Scholar
  75. 75.
    Bainbridge, M. N., Wiszniewski, W., Murdock, D. R., Friedman, J., Gonzaga-Jauregui, C., Newsham, I., Reid, J. G., Fink, J. K., Morgan, M. B., Gingras, M. C., et al. (2011) Whole-genome sequencing for optimized patient management. Sci. Transl. Med., 3, 87re3.PubMedCrossRefGoogle Scholar
  76. 76.
    Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., Dudley, J. T., Ormond, K. E., Pavlovic, A., Morgan, A. A., et al. (2010) Clinical assessment incorporating a personal genome. Lancet, 375, 1525–1535.PubMedCrossRefGoogle Scholar
  77. 77.
    Lesko, L. J. and Schmidt, S. (2012) Individualization of drug therapy: history, present state, and opportunities for the future. Clin. Pharmacol. Ther., 92, 458–466.PubMedCrossRefGoogle Scholar
  78. 78.
    Evans, W. E. and Relling, M. V. (2004) Moving towards individualized medicine with pharmacogenomics. Nature, 429, 464–468.PubMedCrossRefGoogle Scholar
  79. 79.
    Zineh, I. and Johnson, J. A. (2006) Pharmacogenetics of chronic cardiovascular drugs: applications and implications. Expert Opin. Pharmacother., 7, 1417–1427.PubMedCrossRefGoogle Scholar
  80. 80.
    Gupta, S., Jain, S., Brahmachari, S. K. and Kukreti, R. (2006) Pharmacogenomics: a path to predictive medicine for schizophrenia. Pharmacogenomics, 7, 31–47.PubMedCrossRefGoogle Scholar
  81. 81.
    Thorn, C. F., Klein, T. E. and Altman, R. B. (2010) Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics, 11, 501–505.PubMedCrossRefGoogle Scholar
  82. 82.
    McDonagh, E. M., Whirl-Carrillo, M., Garten, Y., Altman, R. B. and Klein, T. E. (2011) From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med., 5, 795–806.PubMedCrossRefGoogle Scholar
  83. 83.
    Lunshof, J. E., Bobe, J., Aach, J., Angrist, M., Thakuria, J. V., Vorhaus, D. B., Hoehe, M. R. and Church, G. M. (2010) Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin. Neurosci., 12, 47–60.PubMedGoogle Scholar
  84. 84.
    Ball, M. P., Thakuria, J. V., Zaranek, A.W., Clegg, T., Rosenbaum, A. M., Wu, X., Angrist, M., Bhak, J., Bobe, J., Callow, M. J., et al. (2012) A public resource facilitating clinical use of genomes. Proc. Natl. Acad. Sci. USA, 109, 11920–11927.PubMedCrossRefGoogle Scholar
  85. 85.
    Church, G. M. (2005) The personal genome project. Mol. Syst. Biol., 1, 2005.0030.PubMedGoogle Scholar
  86. 86.
    Jones, B. (2012) Genomics: personal genome project. Nat. Rev. Genet., 13, 599.PubMedCrossRefGoogle Scholar
  87. 87.
    Clark, T. A., Sugnet, C. W. and Ares, M. Jr. (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science, 296, 907–910.PubMedCrossRefGoogle Scholar
  88. 88.
    Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G., et al. (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308, 1149–1154.PubMedCrossRefGoogle Scholar
  89. 89.
    Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., Rinn, J. L., Tongprasit, W., Samanta, M., Weissman, S., et al. (2004) Global identification of human transcribed sequences with genome tiling arrays. Science, 306, 2242–2246.PubMedCrossRefGoogle Scholar
  90. 90.
    Yamada, K., Lim, J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., Southwick, A. M., Wu, H. C., Kim, C., Nguyen, M., et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842–846.PubMedCrossRefGoogle Scholar
  91. 91.
    David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C. J., Bofkin, L., Jones, T., Davis, R. W. and Steinmetz, L. M. (2006) A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA, 103, 5320–5325.PubMedCrossRefGoogle Scholar
  92. 92.
    Okoniewski, M. J. and Miller, C. J. (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics, 7, 276.PubMedCrossRefGoogle Scholar
  93. 93.
    Royce, T. E., Rozowsky, J. S. and Gerstein, M. B. (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res., 35, e99.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C. J., Rogers, J. and Bähler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453, 1239–1243.PubMedCrossRefGoogle Scholar
  96. 96.
    Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344–1349.PubMedCrossRefGoogle Scholar
  97. 97.
    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621–628.PubMedCrossRefGoogle Scholar
  98. 98.
    Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517.PubMedCrossRefGoogle Scholar
  99. 99.
    Maher, C. A., Kumar-Sinha, C., Cao, X., Kalyana-Sundaram, S., Han, B., Jing, X., Sam, L., Barrette, T., Palanisamy, N. and Chinnaiyan, A. M. (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature, 458, 97–101.PubMedCrossRefGoogle Scholar
  100. 100.
    Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673–684.PubMedCrossRefGoogle Scholar
  101. 101.
    Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., Santarius, T., Stebbings, L. A., Leroy, C., Edkins, S., Hardy, C., et al. (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet., 40, 722–729.PubMedCrossRefGoogle Scholar
  102. 102.
    Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding, J., Tse, K., Haffari, G., et al. (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486, 395–399.PubMedGoogle Scholar
  103. 103.
    Delahaye, N. F., Rusakiewicz, S., Martins, I., Ménard, C., Roux, S., Lyonnet, L., Paul, P., Sarabi, M., Chaput, N., Semeraro, M., et al. (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med., 17, 700–707.PubMedCrossRefGoogle Scholar
  104. 104.
    Rajan, P., Elliott, D. J., Robson, C. N. and Leung, H. Y. (2009) Alternative splicing and biological heterogeneity in prostate cancer. Nat. Rev. Urol., 6, 454–460.PubMedCrossRefGoogle Scholar
  105. 105.
    Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 19, 1720–1730.PubMedGoogle Scholar
  106. 106.
    Lu, P., Vogel, C., Wang, R., Yao, X. and Marcotte, E. M. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol., 25, 117–124.PubMedCrossRefGoogle Scholar
  107. 107.
    Cravatt, B. F., Simon, G. M. and Yates, J. R. 3rd. (2007) The biological impact of mass-spectrometry-based proteomics. Nature, 450, 991–1000.PubMedCrossRefGoogle Scholar
  108. 108.
    Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature, 422, 198–207.PubMedCrossRefGoogle Scholar
  109. 109.
    Aebersold, R. (2003) Quantitative proteome analysis: methods and applications. J. Infect. Dis., 187, S315–S320.PubMedCrossRefGoogle Scholar
  110. 110.
    Aebersold, R. (2003) A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom., 14, 685–695.PubMedCrossRefGoogle Scholar
  111. 111.
    Yates, J. R. 3rd, Gilchrist, A., Howell, K. E. and Bergeron, J. J. (2005) Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol., 6, 702–714.PubMedCrossRefGoogle Scholar
  112. 112.
    Cox, J. and Mann, M. (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem., 80, 273–299.PubMedCrossRefGoogle Scholar
  113. 113.
    Mann, M. and Jensen, O. N. (2003) Proteomic analysis of posttranslational modifications. Nat. Biotechnol., 21, 255–261.PubMedCrossRefGoogle Scholar
  114. 114.
    Allmer, J. (2012) Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids, 42, 129–138.PubMedCrossRefGoogle Scholar
  115. 115.
    Michalski, A., Damoc, E., Hauschild, J. P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox, J., Mann, M. and Horning, S. (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics, 10, M111.011015.PubMedCrossRefGoogle Scholar
  116. 116.
    Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol., 1, 252–262.PubMedCrossRefGoogle Scholar
  117. 117.
    Ong, S. E. and Mann, M. (2007) Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol., 359, 37–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Ong, S. E. and Mann, M. (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc., 1, 2650–2660.PubMedCrossRefGoogle Scholar
  119. 119.
    Ong, S. E., Kratchmarova, I. and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res., 2, 173–181.PubMedCrossRefGoogle Scholar
  120. 120.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A. and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 1, 376–386.PubMedCrossRefGoogle Scholar
  121. 121.
    Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y. and Mann, M. (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat. Protoc., 6, 147–157.PubMedCrossRefGoogle Scholar
  122. 122.
    Choe, L., D’Ascenzo, M., Relkin, N. R., Pappin, D., Ross, P., Williamson, B., Guertin, S., Pribil, P. and Lee, K. H. (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics, 7, 3651–3660.PubMedCrossRefGoogle Scholar
  123. 123.
    Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 3, 1154–1169.PubMedCrossRefGoogle Scholar
  124. 124.
    Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K. and Hamon, C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., 75, 1895–1904.PubMedCrossRefGoogle Scholar
  125. 125.
    Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D. F., Burkhard, P. R. and Sanchez, J. C. (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem., 80, 2921–2931.PubMedCrossRefGoogle Scholar
  126. 126.
    Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science, 312, 212–217.PubMedCrossRefGoogle Scholar
  127. 127.
    Zybailov, B. L., Florens, L. and Washburn, M. P. (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol. Biosyst., 3, 354–360.PubMedCrossRefGoogle Scholar
  128. 128.
    Mueller, L. N., Rinner, O., Schmidt, A., Letarte, S., Bodenmiller, B., Brusniak, M. Y., Vitek, O., Aebersold, R. and Müller, M. (2007) SuperHirn — a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics, 7, 3470–3480.PubMedCrossRefGoogle Scholar
  129. 129.
    May, D., Fitzgibbon, M., Liu, Y., Holzman, T., Eng, J., Kemp, C. J., Whiteaker, J., Paulovich, A. and McIntosh, M. (2007) A platform for accurate mass and time analyses of mass spectrometry data. J. Proteome Res., 6, 2685–2694.PubMedCrossRefGoogle Scholar
  130. 130.
    Lundgren, D. H., Hwang, S. I., Wu, L. and Han, D. K. (2010) Role of spectral counting in quantitative proteomics. Expert Rev. Proteomics, 7, 39–53.PubMedCrossRefGoogle Scholar
  131. 131.
    Liu, H., Sadygov, R. G. and Yates, J. R. 3rd. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem., 76, 4193–4201.PubMedCrossRefGoogle Scholar
  132. 132.
    Kusunoki, M., Tsutsumi, K., Nakayama, M., Kurokawa, T., Nakamura, T., Ogawa, H., Fukuzawa, Y., Morishita, M., Koide, T. and Miyata, T. (2007) Relationship between serum concentrations of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with type 2 diabetes mellitus. J. Med. Invest., 54, 243–247.PubMedCrossRefGoogle Scholar
  133. 133.
    Shaffer, J. P. (2007) Controlling the false discovery rate with constraints: the Newman-Keuls test revisited. Biom. J., 49, 136–143.PubMedCrossRefGoogle Scholar
  134. 134.
    Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol., 21, 921–926.PubMedCrossRefGoogle Scholar
  135. 135.
    Ahdesmäki, M., Lähdesmäki, H., Pearson, R., Huttunen, H. and Yli-Harja, O. (2005) Robust detection of periodic time series measured from biological systems. BMC Bioinformatics, 6, 117.PubMedCrossRefGoogle Scholar
  136. 136.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 17, 994–999.PubMedCrossRefGoogle Scholar
  137. 137.
    Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, R. R., Plouffe, D., Deciu, C., Winzeler, E. and Yates, J. R. 3rd. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 100, 3107–3112.PubMedCrossRefGoogle Scholar
  138. 138.
    Ning, K., Fermin, D. and Nesvizhskii, A. I. (2012) Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J. Proteome Res., 11, 2261–2271.PubMedCrossRefGoogle Scholar
  139. 139.
    Lundberg, E., Fagerberg, L., Klevebring, D., Matic, I., Geiger, T., Cox, J., Algenäs, C., Lundeberg, J., Mann, M. and Uhlen, M. (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol., 6, 450.PubMedCrossRefGoogle Scholar
  140. 140.
    Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., et al. (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell, 125, 173–186.PubMedCrossRefGoogle Scholar
  141. 141.
    Gry, M., Rimini, R., Strömberg, S., Asplund, A., Pontén, F., Uhlén, M. and Nilsson, P. (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics, 10, 365.PubMedCrossRefGoogle Scholar
  142. 142.
    Greenbaum, D., Jansen, R. and Gerstein, M. (2002) Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics, 18, 585–596.PubMedCrossRefGoogle Scholar
  143. 143.
    Petricoin, E. F. III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359, 572–577.PubMedCrossRefGoogle Scholar
  144. 144.
    Nagaraj, N., Wisniewski, J. R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Pääbo, S. and Mann, M. (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol., 7, 548.PubMedCrossRefGoogle Scholar
  145. 145.
    Guo, T., Fan, L., Ng, W. H., Zhu, Y., Ho, M., Wan, W. K., Lim, K. H., Ong, W. S., Lee, S. S., Huang, S., et al. (2012) Multidimensional identification of tissue biomarkers of gastric cancer. J. Proteome Res., 11, 3405–3413.CrossRefGoogle Scholar
  146. 146.
    Woolfson, A., Ellmark, P., Chrisp, J. S., Scott, M. A. and Christopherson, R. I. (2006) The application of CD antigen proteomics to pharmacogenomics. Pharmacogenomics, 7, 759–771.PubMedCrossRefGoogle Scholar
  147. 147.
    Griffin, N. M. and Schnitzer, J. E. (2011) Overcoming key technological challenges in using mass spectrometry for mapping cell surfaces in tissues. Mol. Cell. Proteomics, 10, R110.000935.PubMedCrossRefGoogle Scholar
  148. 148.
    Suhre, K. and Gieger, C. (2012) Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet., 13, 759–769.PubMedCrossRefGoogle Scholar
  149. 149.
    Theodoridis, G., Gika, H. G. and Wilson, I. D. (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom. Rev., 30, 884–906.Google Scholar
  150. 150.
    Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., Sinelnikov, I., Krishnamurthy, R., Eisner, R., Gautam, B., et al. (2011) The human serum metabolome. PLoS ONE, 6, e16957.PubMedCrossRefGoogle Scholar
  151. 151.
    Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27–30.PubMedCrossRefGoogle Scholar
  152. 152.
    Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., Zhou, Z., Han, L., Karapetyan, K., Dracheva, S., Shoemaker, B. A., et al. (2012) PubChem’s BioAssay Database. Nucleic Acids Res., 40, D400–D412.PubMedCrossRefGoogle Scholar
  153. 153.
    Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., et al. (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 40, D742–D753.PubMedCrossRefGoogle Scholar
  154. 154.
    Tautenhahn, R., Cho, K., Uritboonthai, W., Zhu, Z., Patti, G. J. and Siuzdak, G. (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol., 30, 826–828.PubMedCrossRefGoogle Scholar
  155. 155.
    Sana, T. R., Roark, J. C., Li, X., Waddell, K. and Fischer, S. M. (2008) Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech., 19, 258–266.PubMedGoogle Scholar
  156. 156.
    Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R. and Siuzdak, G. (2005) METLIN: a metabolite mass spectral database. Ther. Drug Monit., 27, 747–751.PubMedCrossRefGoogle Scholar
  157. 157.
    Vastrik, I., D’Eustachio, P., Schmidt, E., Gopinath, G., Croft, D., de Bono, B., Gillespie, M., Jassal, B., Lewis, S., Matthews, L., et al. (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol., 8, R39.PubMedCrossRefGoogle Scholar
  158. 158.
    Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., et al. (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res., 37, D619–D622.PubMedCrossRefGoogle Scholar
  159. 159.
    Matthews, L., D’Eustachio, P., Gillespie, M., Croft, D., de Bono, B., Gopinath, G., Jassal, B., Lewis, S., Schmidt, E., Vastrik, I., et al. (2007) An introduction to the reactome knowledgebase of human biological pathways and processes. Bioinformatics Primer, NCI/Nature Pathway Interaction Database.Google Scholar
  160. 160.
    Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., et al. (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., 33, D428–D432.PubMedCrossRefGoogle Scholar
  161. 161.
    Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691–D697.PubMedCrossRefGoogle Scholar
  162. 162.
    Dumont, J., Huybrechts, I., Spinneker, A., Gottrand, F., Grammatikaki, E., Bevilacqua, N., Vyncke, K., Widhalm, K., Kafatos, A., Molnar, D., et al. (2011) FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J. Nutr., 141, 1247–1253.PubMedCrossRefGoogle Scholar
  163. 163.
    Lu, Y., Feskens, E. J., Dollé, M. E., Imholz, S., Verschuren, W. M., Müller, M. and Boer, J.M. (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am. J. Clin. Nutr., 92, 258–265.PubMedCrossRefGoogle Scholar
  164. 164.
    Serkova, N. J. and Glunde, K. (2009) Metabolomics of cancer. Methods Mol. Biol., 520, 273–295.PubMedCrossRefGoogle Scholar
  165. 165.
    Griffin, J. L. and Shockcor, J. P. (2004) Metabolic profiles of cancer cells. Nat. Rev. Cancer, 4, 551–561.PubMedCrossRefGoogle Scholar
  166. 166.
    Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., Kafri, R., Kirschner, M.W., Clish, C. B. and Mootha, V. K. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336, 1040–1044.PubMedCrossRefGoogle Scholar
  167. 167.
    Newgard, C. B. (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab., 15, 606–614.PubMedCrossRefGoogle Scholar
  168. 168.
    Li, X., Gianoulis, T. A., Yip, K. Y., Gerstein, M. and Snyder, M. (2010) Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell, 143, 639–650.PubMedCrossRefGoogle Scholar
  169. 169.
    MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760–1763.PubMedGoogle Scholar
  170. 170.
    Haab, B. B., Dunham, M. J. and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol., 2, RESEARCH0004.PubMedCrossRefGoogle Scholar
  171. 171.
    Robinson, W. H., Steinman, L. and Utz, P. J. (2003) Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics, 3, 2077–2084.PubMedCrossRefGoogle Scholar
  172. 172.
    Robinson, W. H., DiGennaro, C., Hueber, W., Haab, B. B., Kamachi, M., Dean, E. J., Fournel, S., Fong, D., Genovese, M. C., de Vegvar, H. E., et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med., 8, 295–301.PubMedCrossRefGoogle Scholar
  173. 173.
    Sharon, D., Chen, R. and Snyder, M. (2010) Systems biology approaches to disease marker discovery. Dis. Markers, 28, 209–224.PubMedCrossRefGoogle Scholar
  174. 174.
    Hudson, M. E., Pozdnyakova, I., Haines, K., Mor, G. and Snyder, M. (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl. Acad. Sci. USA, 104, 17494–17499.PubMedCrossRefGoogle Scholar
  175. 175.
    Zhu, H., Hu, S., Jona, G., Zhu, X., Kreiswirth, N., Willey, B. M., Mazzulli, T., Liu, G., Song, Q., Chen, P., et al. (2006) Severe acute respiratory syndrome diagnostics using a coronavirus protein micro-array. Proc. Natl. Acad. Sci. USA, 103, 4011–4016.PubMedCrossRefGoogle Scholar
  176. 176.
    Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M. G., Alonso, M. N., et al. (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med., 17, 610–617.PubMedCrossRefGoogle Scholar
  177. 177.
    Miersch, S. and LaBaer, J. (2011) Nucleic Acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr. Protoc. Protein Sci., Chapter 27, Unit27.2.Google Scholar
  178. 178.
    Sibani, S. and LaBaer, J. (2011) Immunoprofiling using NAPPA protein microarrays. Methods Mol. Biol., 723, 149–161.PubMedCrossRefGoogle Scholar
  179. 179.
    Andresen, H. and Bier, F. F. (2009) Peptide microarrays for serum antibody diagnostics. Methods Mol. Biol., 509, 123–134.PubMedCrossRefGoogle Scholar
  180. 180.
    Andresen, H., Grötzinger, C., Zarse, K., Kreuzer, O. J., Ehrentreich-Förster, E. and Bier, F. F. (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics, 6, 1376–1384.PubMedCrossRefGoogle Scholar
  181. 181.
    Wong, S. J., Demarest, V. L., Boyle, R. H., Wang, T., Ledizet, M., Kar, K., Kramer, L. D., Fikrig, E. and Koski, R. A. (2004) Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J. Clin. Microbiol., 42, 65–72.PubMedCrossRefGoogle Scholar
  182. 182.
    Weinstock, G. M. (2012) Genomic approaches to studying the human microbiota. Nature, 489, 250–256.PubMedCrossRefGoogle Scholar
  183. 183.
    Clemente, J. C., Ursell, L. K., Parfrey, L. W. and Knight, R. (2012) The impact of the gut microbiota on human health: an integrative view. Cell, 148, 1258–1270.PubMedCrossRefGoogle Scholar
  184. 184.
    Grice, E. A. and Segre, J. A. (2012) The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet., 13, 151–170.PubMedCrossRefGoogle Scholar
  185. 185.
    Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L.W., Clemente, J. C., Gevers, D. and Knight, R. (2012) Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet., 13, 47–58.CrossRefGoogle Scholar
  186. 186.
    Sonnenburg, J. L. and Fischbach, M. A. (2011) Community health care: therapeutic opportunities in the human microbiome. Sci. Transl. Med., 3, 78ps12.PubMedCrossRefGoogle Scholar
  187. 187.
    Cho, I. and Blaser, M. J. (2012) The human microbiome: at the interface of health and disease. Nat. Rev. Genet., 13, 260–270.PubMedGoogle Scholar
  188. 188.
    Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.PubMedCrossRefGoogle Scholar
  189. 189.
    Wen, L., Ley, R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong, F. S., Szot, G. L., Bluestone, J. A., et al. (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455, 1109–1113.PubMedCrossRefGoogle Scholar
  190. 190.
    Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.PubMedCrossRefGoogle Scholar
  191. 191.
    Littman, D. R. and Pamer, E. G. (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe, 10, 311–323.PubMedCrossRefGoogle Scholar
  192. 192.
    Pelizzola, M. and Ecker, J. R. (2011) The DNA methylome. FEBS Lett., 585, 1994–2000.PubMedCrossRefGoogle Scholar
  193. 193.
    Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484–492.PubMedCrossRefGoogle Scholar
  194. 194.
    Bock, C. (2012) Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13, 705–719.PubMedCrossRefGoogle Scholar
  195. 195.
    Laird, P. W. (2010) Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11, 191–203.PubMedCrossRefGoogle Scholar
  196. 196.
    Li, Y., Zhu, J., Tian, G., Li, N., Li, Q., Ye, M., Zheng, H., Yu, J., Wu, H., Sun, J., et al. (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol., 8, e1000533.PubMedCrossRefGoogle Scholar
  197. 197.
    Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., et al. (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471, 68–73.PubMedCrossRefGoogle Scholar
  198. 198.
    Green, E. D., Guyer, M. S.. and National Human Genome Research Institute. (2011) Charting a course for genomic medicine from base pairs to bedside. Nature, 470, 204–213.PubMedCrossRefGoogle Scholar
  199. 199.
    Moch, H., Blank, P. R., Dietel, M., Elmberger, G., Kerr, K. M., Palacios, J., Penault-Llorca, F., Rossi, G. and Szucs, T. D. (2012) Personalized cancer medicine and the future of pathology. Virchows Arch., 460, 3–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Tsimberidou, A. M., Iskander, N. G., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., Piha-Paul, S. A., Naing, A., Janku, F., Luthra, R., et al. (2012) Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center Initiative. Clin. Cancer Res., 18, 6373–6383.PubMedCrossRefGoogle Scholar
  201. 201.
    Parkinson, D. R., Johnson, B. E. and Sledge, G. W. (2012) Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin. Cancer Res., 18, 619–624.PubMedCrossRefGoogle Scholar
  202. 202.
    Modugno, F. and Edwards, R. P. (2012) Ovarian cancer: prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report. Int. J. Gynecol. Cancer, 22, S45–S57.PubMedCrossRefGoogle Scholar
  203. 203.
    Cho, S. H., Jeon, J. and Kim, S. I. (2012) Personalized medicine in breast cancer: a systematic review. J. Breast Cancer, 15, 265–272.PubMedCrossRefGoogle Scholar
  204. 204.
    Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu, Y. M., Cao, X., Kalyana-Sundaram, S., Sam, L., Balbin, O. A., Quist, M. J., et al. (2011) Personalized oncology through integrative highthroughput sequencing: a pilot study. Sci. Transl. Med., 3, 111ra121.PubMedCrossRefGoogle Scholar
  205. 205.
    Bar-Joseph, Z., Gitter, A. and Simon, I. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552–564.PubMedCrossRefGoogle Scholar
  206. 206.
    Dennis, G. Jr, Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. and Lempicki, R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol., 4, P3.PubMedCrossRefGoogle Scholar
  207. 207.
    Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. and Ideker, T. (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431–432.PubMedCrossRefGoogle Scholar
  208. 208.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498–2504.PubMedCrossRefGoogle Scholar
  209. 209.
    Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448–3449.PubMedCrossRefGoogle Scholar
  210. 210.
    Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., et al. (2007) Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc., 2, 2366–2382.PubMedCrossRefGoogle Scholar
  211. 211.
    Lam, H. Y., Pan, C., Clark, M. J., Lacroute, P., Chen, R., Haraksingh, R., O’Huallachain, M., Gerstein, M. B., Kidd, J. M., Bustamante, C. D., et al. (2012) Detecting and annotating genetic variations using the HugeSeq pipeline. Nat. Biotechnol., 30, 226–229.PubMedCrossRefGoogle Scholar
  212. 212.
    Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J. and Marra, M. A. (2009) Circos: an information aesthetic for comparative genomics. Genome Res., 19, 1639–1645.PubMedCrossRefGoogle Scholar
  213. 213.
    Dorogovtsev, S. N., Goltsev, A. V. and Mendes, J. F. F. (2008) Critical phenomena in complex networks. Rev. Mod. Phys., 80, 1275–1335.CrossRefGoogle Scholar
  214. 214.
    Albert, R. and Barabasi, A. L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 47–97.CrossRefGoogle Scholar
  215. 215.
    Alon, U. (2003) Biological networks: the tinkerer as an engineer. Science, 301, 1866–1867.PubMedCrossRefGoogle Scholar
  216. 216.
    Costa, L. F., Rodrigues, F. A. and Cristino, A. S. (2008) Complex networks: the key to systems biology. Genet. Mol. Biol., 31, 591–601.CrossRefGoogle Scholar
  217. 217.
    Levy, E. D. and Pereira-Leal, J. B. (2008) Evolution and dynamics of protein interactions and networks. Curr. Opin. Struct. Biol., 18, 349–357.PubMedCrossRefGoogle Scholar
  218. 218.
    Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L. and Nolan, G. P. (2011) Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat. Rev. Genet., 12, 224.PubMedCrossRefGoogle Scholar
  219. 219.
    Trelles, O., Prins, P., Snir, M. and Jansen, R. C. (2011) Big data, but are we ready? Nat. Rev. Genet., 12, 224.PubMedCrossRefGoogle Scholar
  220. 220.
    Biesecker, L. G. (2012) Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genet. Med., 14, 393–398.PubMedCrossRefGoogle Scholar
  221. 221.
    Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713–714.PubMedCrossRefGoogle Scholar
  222. 222.
    Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.PubMedCrossRefGoogle Scholar
  223. 223.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297–1303.PubMedCrossRefGoogle Scholar
  224. 224.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and 1000 Genome Project Data Processing Subgroup. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079.PubMedCrossRefGoogle Scholar
  225. 225.
    Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164.PubMedCrossRefGoogle Scholar
  226. 226.
    Ng, P. C. and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res., 31, 3812–3814.PubMedCrossRefGoogle Scholar
  227. 227.
    Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248–249.PubMedCrossRefGoogle Scholar
  228. 228.
    Flanagan, S. E., Patch, A. M. and Ellard, S. (2010) Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet. Test. Mol. Biomarkers, 14, 533–537.PubMedCrossRefGoogle Scholar
  229. 229.
    Abyzov, A., Urban, A. E., Snyder, M. and Gerstein, M. (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res., 21, 974–984.PubMedCrossRefGoogle Scholar
  230. 230.
    Wang, L. Y., Abyzov, A., Korbel, J. O., Snyder, M. and Gerstein, M. (2009) MSB: a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res., 19, 106–117.PubMedCrossRefGoogle Scholar
  231. 231.
    Ye, K., Schulz, M. H., Long, Q., Apweiler, R. and Ning, Z. (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics, 25, 2865–2871.PubMedCrossRefGoogle Scholar
  232. 232.
    Lam, H. Y., Mu, X. J., Stütz, A. M., Tanzer, A., Cayting, P. D., Snyder, M., Kim, P. M., Korbel, J. O. and Gerstein, M. B. (2010) Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nat. Biotechnol., 28, 47–55.PubMedCrossRefGoogle Scholar
  233. 233.
    Rausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V. and Korbel, J. O. (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28, i333–i339.PubMedCrossRefGoogle Scholar
  234. 234.
    Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5, R80.PubMedCrossRefGoogle Scholar
  235. 235.
    Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.PubMedCrossRefGoogle Scholar
  236. 236.
    Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359.PubMedCrossRefGoogle Scholar
  237. 237.
    Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics, Chapter 11, Unit 11.7.Google Scholar
  238. 238.
    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578.PubMedCrossRefGoogle Scholar
  239. 239.
    Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111.PubMedCrossRefGoogle Scholar
  240. 240.
    Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325–2329.PubMedCrossRefGoogle Scholar
  241. 241.
    Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515.PubMedCrossRefGoogle Scholar
  242. 242.
    Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P. and Mesirov, J. P. (2006) GenePattern 2.0. Nat. Genet., 38, 500–501.PubMedCrossRefGoogle Scholar
  243. 243.
    Kuehn, H., Liberzon, A., Reich, M. and Mesirov, J. P. (2008) Using GenePattern for gene expression analysis. Curr. Protoc. Bioinformatics, Chapter 7, Unit 7.12.Google Scholar
  244. 244.
    Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., et al. (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510.PubMedCrossRefGoogle Scholar
  245. 245.
    Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.PubMedCrossRefGoogle Scholar
  246. 246.
    Li, J.W., Schmieder, R., Ward, R. M., Delenick, J., Olivares, E. C. and Mittelman, D. (2012) SEQanswers: an open access community for collaboratively decoding genomes. Bioinformatics, 28, 1272–1273.PubMedCrossRefGoogle Scholar
  247. 247.
    Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang, W. H., Rompp, A., Neumann, S., Pizarro, A. D., et al. (2011) mzML — a community standard for mass spectrometry data. Mol. Cell. Proteomics, 10, R110.000133.Google Scholar
  248. 248.
    Deutsch, E. W. (2010) Mass spectrometer output file format mzML. Methods Mol. Biol., 604, 319–331.PubMedCrossRefGoogle Scholar
  249. 249.
    Deutsch, E. (2008) mzML: a single, unifying data format for mass spectrometer output. Proteomics, 8, 2776–2777.PubMedCrossRefGoogle Scholar
  250. 250.
    Kessner, D., Chambers, M., Burke, R., Agus, D. and Mallick, P. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534–2536.PubMedCrossRefGoogle Scholar
  251. 251.
    Craig, R. and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20, 1466–1467.PubMedCrossRefGoogle Scholar
  252. 252.
    Eng, J. K., McCormack, A. L. and Yates, J. R. III. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 5, 976–989.CrossRefGoogle Scholar
  253. 253.
    Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551–3567.PubMedCrossRefGoogle Scholar
  254. 254.
    Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X., Shi, W. and Bryant, S. H. (2004) Open mass spectrometry search algorithm. J. Proteome Res., 3, 958–964.PubMedCrossRefGoogle Scholar
  255. 255.
    Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res., 2, 43–50.PubMedCrossRefGoogle Scholar
  256. 256.
    Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P. and Gygi, S. P. (2004) Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat. Biotechnol., 22, 214–219.PubMedCrossRefGoogle Scholar
  257. 257.
    Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A. and Ma, B. (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics, 11, M111.010587.PubMedCrossRefGoogle Scholar
  258. 258.
    Pedrioli, P. G. (2010) Trans-proteomic pipeline: a pipeline for proteomic analysis. Methods Mol. Biol., 604, 213–238.PubMedCrossRefGoogle Scholar
  259. 259.
    Keller, A. and Shteynberg, D. (2011) Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. Methods Mol. Biol., 694, 169–189.PubMedCrossRefGoogle Scholar
  260. 260.
    Deutsch, E.W., Shteynberg, D., Lam, H., Sun, Z., Eng, J. K., Carapito, C., von Haller, P. D., Tasman, N., Mendoza, L., Farrah, T., et al. (2010) Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets. Proteomics, 10, 1190–1195.PubMedCrossRefGoogle Scholar
  261. 261.
    Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., Lam, H., Tasman, N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., et al. (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics, 10, 1150–1159.PubMedCrossRefGoogle Scholar
  262. 262.
    Sturm, M., Bertsch, A., Gröpl, C., Hildebrandt, A., Hussong, R., Lange, E., Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., et al. (2008) OpenMS — an open-source software framework for mass spectrometry. BMC Bioinformatics, 9, 163.PubMedCrossRefGoogle Scholar
  263. 263.
    Kohlbacher, O., Reinert, K., Gröpl, C., Lange, E., Pfeifer, N., Schulz-Trieglaff, O. and Sturm, M. (2007) TOPP — the OpenMS proteomics pipeline. Bioinformatics, 23, e191–e197.PubMedCrossRefGoogle Scholar
  264. 264.
    Bertsch, A., Gröpl, C., Reinert, K. and Kohlbacher, O. (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol. Biol., 696, 353–367.PubMedCrossRefGoogle Scholar
  265. 265.
    Tautenhahn, R., Patti, G. J., Kalisiak, E., Miyamoto, T., Schmidt, M., Lo, F. Y., McBee, J., Baliga, N. S. and Siuzdak, G. (2011) metaXCMS: second-order analysis of untargeted metabolomics data. Anal. Chem., 83, 696–700.PubMedCrossRefGoogle Scholar
  266. 266.
    Tautenhahn, R., Patti, G. J., Rinehart, D. and Siuzdak, G. (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem., 84, 5035–5039.PubMedCrossRefGoogle Scholar
  267. 267.
    Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem., 78, 779–787.PubMedCrossRefGoogle Scholar
  268. 268.
    Pluskal, T., Castillo, S., Villar-Briones, A. and Oresic, M. (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.PubMedCrossRefGoogle Scholar
  269. 269.
    Katajamaa, M., Miettinen, J. and Oresic, M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634–636.PubMedCrossRefGoogle Scholar
  270. 270.
    Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., et al. (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 36, D623–D631.PubMedCrossRefGoogle Scholar
  271. 271.
    Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P., Karthikeyan, A. S., Kothari, A., Krummenacker, M., et al. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 38, D473–D479.PubMedCrossRefGoogle Scholar
  272. 272.
    Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2013

Authors and Affiliations

  1. 1.Department of Genetics, Stanford University School of MedicineStanford UniversityStanfordUSA

Personalised recommendations