Advertisement

Measuring diaphragm movement and respiratory frequency using a novel ultrasound device in healthy volunteers

  • Håvard Andreassen SæverudEmail author
  • Ragnhild Sørum Falk
  • Adam Dowrick
  • Morten Eriksen
  • Sigurd Aarrestad
  • Ole Henning Skjønsberg
Original Paper

Abstract

Purpose

To evaluate the ability of a novel ultrasound (US) device, DiaMon, to monitor diaphragm movement via its proxy liver movement, and compare it with the respired flow measured with a flowmeter, in awake and healthy volunteers. We wanted to (1) establish the optimal anatomical position for attaching the DiaMon device to the abdominal wall, and (2) evaluate the accuracy of continuous monitoring of respiratory frequency.

Methods

Thirty healthy subjects were recruited. The DiaMon probe was applied subcostally in four different positions with the subjects in five different postures. The subjects breathed tidal volumes into a spirometer for 30–60 s with the DiaMon recording simultaneously.

Results

The device detected a readable signal in 83–100% of the position/posture-combinations. The technical correlation between the two signals was highest in the anterior axillary-supine position (mean ± SD: 0.95 ± 0.03), followed by paramidline-supine (0.90 ± 0.09) and midclavicular-supine (0.89 ± 0.12). The frequency measurements yielded a mean difference of 0.03 (95% limits of agreement − 0.11, 0.16) breaths per minute in the anterior axillary-supine position.

Conclusion

The DiaMon device is able to detect liver movement in most subjects, and it measures breathing frequency accurately.

Keywords

Ultrasound Diaphragm Respiration Non-invasive 

Notes

Compliance with ethical standards

Conflict of interest

Two of the authors were employees at Respinor at the time of writing the article. Respinor contributed funds equivalent to 20% of the gross salary of the main author for the time used preparing the protocol and gathering the data. The authors have no other conflict of interests.

Supplementary material

40477_2019_412_MOESM1_ESM.tiff (22.1 mb)
Supplementary material 1 (TIFF 22668 kb)

References

  1. 1.
    Walaszek M, Kosiarska A, Gniadek A, Kolpa M, Wolak Z, Dobros W, Siadek J (2016) The risk factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl Epidemiol 70(1):15–20PubMedGoogle Scholar
  2. 2.
    Ranjan N, Chaudhary U, Chaudhry D, Ranjan KP (2014) Ventilator-associated pneumonia in a tertiary care intensive care unit: analysis of incidence, risk factors and mortality. Indian J Crit Care Med 18(4):200–204.  https://doi.org/10.4103/0972-5229.130570 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hortal J, Giannella M, Perez MJ, Barrio JM, Desco M, Bouza E, Munoz P (2009) Incidence and risk factors for ventilator-associated pneumonia after major heart surgery. Intensiv Care Med 35(9):1518–1525.  https://doi.org/10.1007/s00134-009-1523-3 CrossRefGoogle Scholar
  4. 4.
    Halpern NA, Pastores SM, Greenstein RJ (2004) Critical care medicine in the United States 1985–2000: an analysis of bed numbers, use, and costs*. Crit Care Med 32(6):1254–1259.  https://doi.org/10.1097/01.ccm.0000128577.31689.4c CrossRefPubMedGoogle Scholar
  5. 5.
    McCool FD, Tzelepis GE (2012) Dysfunction of the diaphragm. N Engl J Med 366(10):932–942.  https://doi.org/10.1056/NEJMra1007236 CrossRefPubMedGoogle Scholar
  6. 6.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335.  https://doi.org/10.1056/NEJMoa070447 CrossRefPubMedGoogle Scholar
  7. 7.
    Jung B, Nougaret S, Conseil M, Coisel Y, Futier E, Chanques G, Molinari N, Lacampagne A, Matecki S, Jaber S (2014) Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology 120(5):1182–1191.  https://doi.org/10.1097/ALN.0000000000000201 CrossRefPubMedGoogle Scholar
  8. 8.
    Funk GC, Anders S, Breyer MK, Burghuber OC, Edelmann G, Heindl W, Hinterholzer G, Kohansal R, Schuster R, Schwarzmaier-D’Assie A, Valentin A, Hartl S (2010) Incidence and outcome of weaning from mechanical ventilation according to new categories. Eur Respir J 35(1):88–94.  https://doi.org/10.1183/09031936.00056909 CrossRefPubMedGoogle Scholar
  9. 9.
    Esteban A, Alia I, Tobin MJ, Gil A, Gordo F, Vallverdu I, Blanch L, Bonet A, Vazquez A, de Pablo R, Torres A, de La Cal MA, Macias S (1999) Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 159(2):512–518.  https://doi.org/10.1164/ajrccm.159.2.9803106 CrossRefPubMedGoogle Scholar
  10. 10.
    Esteban A, Alia I, Gordo F, Fernandez R, Solsona JF, Vallverdu I, Macias S, Allegue JM, Blanco J, Carriedo D, Leon M, de la Cal MA, Taboada F, Gonzalez de Velasco J, Palazon E, Carrizosa F, Tomas R, Suarez J, Goldwasser RS (1997) Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 156(2 Pt 1):459–465.  https://doi.org/10.1164/ajrccm.156.2.9610109 CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang JR, Tsai TH, Jerng JS, Yu CJ, Wu HD, Yang PC (2004) Ultrasonographic evaluation of liver/spleen movements and extubation outcome. Chest 126(1):179–185.  https://doi.org/10.1378/chest.126.1.179 CrossRefPubMedGoogle Scholar
  12. 12.
    Spadaro S, Grasso S, Mauri T, Dalla Corte F, Alvisi V, Ragazzi R, Cricca V, Biondi G, Di Mussi R, Marangoni E, Volta CA (2016) Can diaphragmatic ultrasonography performed during the T-tube trial predict weaning failure? The role of diaphragmatic rapid shallow breathing index. Crit Care.  https://doi.org/10.1186/s13054-016-1479-y CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, Richard JC, Brochard L (2013) Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensiv Care Med 39(5):801–810.  https://doi.org/10.1007/s00134-013-2823-1 CrossRefGoogle Scholar
  14. 14.
    Dube BP, Dres M, Mayaux J, Demiri S, Similowski T, Demoule A (2017) Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax.  https://doi.org/10.1136/thoraxjnl-2016-209459 CrossRefPubMedGoogle Scholar
  15. 15.
    Ayoub J, Cohendy R, Dauzat M, Targhetta R, De la Coussaye JE, Bourgeois JM, Ramonatxo M, Prefaut C, Pourcelot L (1997) Non-invasive quantification of diaphragm kinetics using m-mode sonography. Can J Anaesth 44(7):739–744.  https://doi.org/10.1007/BF03013389 CrossRefPubMedGoogle Scholar
  16. 16.
    Konno K, Mead J (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 22(3):407–422.  https://doi.org/10.1152/jappl.1967.22.3.407 CrossRefPubMedGoogle Scholar
  17. 17.
    Shahshahani A, Laverdiere C, Bhadra S, Zilic Z (2018) Ultrasound sensors for diaphragm motion tracking: an application in non-invasive respiratory monitoring. Sensors (Basel, Switzerland).  https://doi.org/10.3390/s18082617 CrossRefGoogle Scholar
  18. 18.
    Fekr AR, Radecka K, Zilic Z (2015) Design and evaluation of an intelligent remote tidal volume variability monitoring system in e-health applications. IEEE J Biomed Health Inform 19(5):1532–1548.  https://doi.org/10.1109/JBHI.2015.2445783 CrossRefPubMedGoogle Scholar
  19. 19.
    Nilsson L, Johansson A, Kalman S (2005) Respiration can be monitored by photoplethysmography with high sensitivity and specificity regardless of anaesthesia and ventilatory mode. Acta Anaesthesiol Scand 49(8):1157–1162.  https://doi.org/10.1111/j.1399-6576.2005.00721.x CrossRefPubMedGoogle Scholar
  20. 20.
    Yang J, Cai J, Wang H, Chang Z, Czito BG, Bashir MR, Palta M, Yin FF (2014) Is diaphragm motion a good surrogate for liver tumor motion? Int J Radiat Oncol Biol Phys 90(4):952–958.  https://doi.org/10.1016/j.ijrobp.2014.07.028 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Korin HW, Ehman RL, Riederer SJ, Felmlee JP, Grimm RC (1992) Respiratory kinematics of the upper abdominal organs—a quantitative study. Magn Reson Med 23(1):172–178.  https://doi.org/10.1002/mrm.1910230118 CrossRefPubMedGoogle Scholar
  22. 22.
    Bellani G, Pesenti A (2014) Assessing effort and work of breathing. Curr Opin Crit Care 20(3):352–358.  https://doi.org/10.1097/MCC.0000000000000089 CrossRefPubMedGoogle Scholar
  23. 23.
    Cohn D, Benditt JO, Eveloff S, McCool FD (1997) Diaphragm thickening during inspiration. J Appl Physiol 83(1):291–296CrossRefGoogle Scholar
  24. 24.
    Ferrari G, De Filippi G, Elia F, Panero F, Volpicelli G, Apra F (2014) Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J 6(1):8.  https://doi.org/10.1186/2036-7902-6-8 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gethin-Jones TL, Noble VE, Morse CR (2010) Quantification of diaphragm function using ultrasound: evaluation of a novel technique. Ultrasound Med Biol 36(11):1965–1969.  https://doi.org/10.1016/j.ultrasmedbio.2010.08.003 CrossRefPubMedGoogle Scholar
  26. 26.
    Testa A, Soldati G, Giannuzzi R, Berardi S, Portale G, Gentiloni Silveri N (2011) Ultrasound M-mode assessment of diaphragmatic kinetics by anterior transverse scanning in healthy subjects. Ultrasound Med Biol 37(1):44–52.  https://doi.org/10.1016/j.ultrasmedbio.2010.10.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Zanforlin A, Smargiassi A, Inchingolo R, Valente S, Ramazzina E (2015) Ultrasound in obstructive lung diseases: the effect of airway obstruction on diaphragm kinetics. A short pictorial essay. J Ultrasound 18(4):379–384.  https://doi.org/10.1007/s40477-014-0122-5 CrossRefPubMedGoogle Scholar
  28. 28.
    Zanforlin A, Smargiassi A, Inchingolo R, di Marco Berardino A, Valente S, Ramazzina E (2014) Ultrasound analysis of diaphragm kinetics and the diagnosis of airway obstruction: the role of the M-mode index of obstruction. Ultrasound Med Biol 40(6):1065–1071.  https://doi.org/10.1016/j.ultrasmedbio.2013.12.009 CrossRefPubMedGoogle Scholar
  29. 29.
    Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A (2008) Respiratory rate: the neglected vital sign. Med J Aust 188(11):657–659CrossRefGoogle Scholar
  30. 30.
    Vincent JL, Einav S, Pearse R, Jaber S, Kranke P, Overdyk FJ, Whitaker DK, Gordo F, Dahan A, Hoeft A (2018) Improving detection of patient deterioration in the general hospital ward environment. Eur J Anaesthesiol 35(5):325–333.  https://doi.org/10.1097/EJA.0000000000000798 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS (1993) Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J Gen Intern Med 8(7):354–360CrossRefGoogle Scholar
  32. 32.
    Mochizuki K, Shintani R, Mori K, Sato T, Sakaguchi O, Takeshige K, Nitta K, Imamura H (2017) Importance of respiratory rate for the prediction of clinical deterioration after emergency department discharge: a single-center, case-control study. Acute Med Surg 4(2):172–178.  https://doi.org/10.1002/ams2.252 CrossRefPubMedGoogle Scholar
  33. 33.
    Kenzaka T, Okayama M, Kuroki S, Fukui M, Yahata S, Hayashi H, Kitao A, Sugiyama D, Kajii E, Hashimoto M (2012) Importance of vital signs to the early diagnosis and severity of sepsis: association between vital signs and sequential organ failure assessment score in patients with sepsis. Intern Med 51(8):871–876.  https://doi.org/10.2169/internalmedicine.51.6951 CrossRefPubMedGoogle Scholar
  34. 34.
    Van Leuvan CHM, Mitchell I (2008) Missed opportunities? an observational study of vital signs measurements. Crit Care Resusc 10:111–115PubMedGoogle Scholar
  35. 35.
    Philip KEJ, Pack E, Cambiano V, Rollmann H, Weil S, O’Beirne J (2014) The accuracy of respiratory rate assessment by doctors in a London teaching hospital: a cross-sectional study. J Clin Monit Comput 29(4):455–460.  https://doi.org/10.1007/s10877-014-9621-3 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB) 2019

Authors and Affiliations

  1. 1.Department of Pulmonary MedicineOslo University HospitalOsloNorway
  2. 2.Oslo Centre for Biostatistics and Epidemiology, Research Support ServicesOslo University HospitalOsloNorway
  3. 3.RespinorOsloNorway
  4. 4.Faculty of MedicineUniversity of OsloOsloNorway
  5. 5.Norwegian National Advisory Unit on Long Term Mechanical VentilationHaukeland University HospitalBergenNorway

Personalised recommendations