Advertisement

Journal of Ultrasound

, Volume 21, Issue 1, pp 25–34 | Cite as

Sonographic evaluation of kidney echogenicity and morphology among HIV sero-positive adults at Lagos University Teaching Hospital

  • Cletus Uche EzeEmail author
  • Charles Ugwoke Eze
  • Adekunle Adeyomoye
Original Article
  • 84 Downloads

Abstract

Aim

To evaluate the role of kidney echogenicity and morphology in the diagnosis of human immunodeficiency virus-associated nephropathy (HIVAN).

Subjects and methods

In the cross-sectional study, a sample of 340 anti-retroviral therapy (ART)-naïve AIDS patients underwent laboratory CD4+ count, serum creatinine determination and sonographic renal echogenicity grading and size measurement. Rounded kidneys were described as bulbous while bean-shaped kidneys were described as reniform; echogenicity was categorized into grades 0, 1, 2 and 3. Kidney length, width, thickness and volume were measured in HIVAN and control groups.

Results

Mean age of the population was 42.7 ± 9.4 years; 87.4% had HIVAN. Mean CD4+ count, serum creatinine and GFR for HIVAN patients were 153.1 ± 103.2 cells/mm3, 218.4 ± 147.4 mmol/L and 50.1 ± 23.6 mL/min/1.73 m2 for males and 121.9 ± 91.0 cells/mm3, and 222.0 ± 150.4 mmol/L and 39.3 ± 20.6 mL/min/1.73 m2 for females, respectively; control subjects and non-HIVAN patients had grade 0 renal echogenicity; 56.9% of HIVAN patients had echogenicity grade 3; 5.3% had kidney length < 10 cm; 73.9% had bulbous kidneys; the kidney was significantly wider and thicker in HIVAN (p < 0.05).

Conclusion

Sonographic evaluation of renal echogenicity and morphology can reliably predict HIVAN diagnosis. Apathy to screening and late presentation were high while HIV/AIDS remains an important public health problem in the city of Lagos. Unilateral reduction in kidney size could be a major sequela of AIDS while sonographic measurement of absolute kidney length appears inadequate in the evaluation of AIDS patients with nephropathy.

Keywords

AIDS/HIVAN Nephropathy Echogenicity Morphology Sonography 

Sommario

Scopo

valutare il ruolo dell’ecogenicità e della morfologia renale nella nefropatia associata a virus dell’immunodeficienza umana (HIVAN).

Pazienti e metodi

Questo studio cross-sectional, ha incluso 340 pazienti affetti da AIDS mai trattati con terapia anti-retrovirale (ART). In tutti i pazienti sono state effettuate indagini di laboratorio che comprendevano il conteggio dei linfociti CD4+ e la determinazione della creatinina sierica, e la valutazione ecografica delle dimensioni e dell’ecogenicità dei reni. I reni arrotondati sono stati descritti come bozzuti mentre i reni a forma di fagiolo come reniformi; l’ecogenicità è stata classificata in gradi 0, 1, 2 e 3. La lunghezza del rene, la larghezza, lo spessore e il volume sono stati misurati in gruppi di controllo e nei soggetti con HIVAN.

Risultati

L’età media della popolazione era 42.7 ± 9.4 anni; l’87,4% aveva HIVAN. La conta media dei CD4+, la creatinina sierica e la GFR dei pazienti con HIVAN erano rispettivamente 153.1 ± 103.2 cellule mm3, 218.4 ± 47.4 mmol/L e 50.1 ± 23.6 ml/min/1.73 m2 per i maschi e 121.9 ± 91.0 cellule/mm3 e 222.0 ± 150.4 mmol/L e 39.3 ± 20.6 mL/min/1.73 m2 per le femmine. I soggetti di controllo e i pazienti senza HIVAN avevano ecogenicità renale di grado 0, mentre i il 56.9% dei pazienti con HIVAN aveva una ecogenicità di grado 3. Il 5.3% aveva una lunghezza dei reni < 10 cm, il 73.9% aveva reni bozzuti e nel complesso i reni erano significativamente più larghi e di maggior spessore nei pazienti con HIVAN (p < 0.05).

Conclusioni

la valutazione ecografica dell’ecogenicità e della morfologia renale possono indicare in modo affidabile la diagnosi di HIVAN, essere utilizzati per lo screening ed evitare la presentazione tardiva, laddove HIV e AIDS restano un importante problema di salute pubblica. La riduzione unilaterale delle dimensioni del rene potrebbe essere un conseguenza principale di AIDS, mentre la misurazione ecografica della lunghezza assoluta dei reni appare non adeguata per identificare i pazienti affetti da AIDS con nefropatia.

Notes

Compliance with ethical standards

Conflict of interest

None to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Human and animal studies

The study was conducted in accordance with all institutional and national guidelines for the care and use of laboratory animals.

References

  1. 1.
    Okpa HO, Bisong EM, Enang OE, Monjok E, Essien (2017) Predictors of hypertension in an urban HIV-infected population at the University of Calabar Teaching Hospital, Calabar, Nigeria. HIV/AIDS Res Palliat Care 9:19–24CrossRefGoogle Scholar
  2. 2.
    Roser M (2016) HIV/AIDS. Published online at OurWorldInData.org. https://ourworldindata.org/hiv-aids/. Retrieved 4 April 2017
  3. 3.
    Awofala AA, Ogundele OE (2016) HIV epidemiology in Nigeria. SJBS.  https://doi.org/10.1016/j.sjbs.2016.03.006 Google Scholar
  4. 4.
    Rao TK, Filippone FJ, Nicastri AD, Landesman SH, Frean E, Chen CK, Friedman EA (1984) Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med 310(11):669–673CrossRefPubMedGoogle Scholar
  5. 5.
    Garko SS, Ibinaiye PO, Abba SM, Ahmed A, Tanimu SS, Okere PC (2015) The utilization of diagnostic ultrasound in the evaluation of the kidneys in HIV-associated nephropathy. West Afr J Radiol 22:20–26CrossRefGoogle Scholar
  6. 6.
    Symeonidou C, Standish R, Sahdev A, Katz RD, Morlese J, Malhotra A (2008) Imaging and histopathologic features of HIV-related disease. RadioGraphics 28:1339–1354.  https://doi.org/10.1148/rj.285075126 CrossRefPubMedGoogle Scholar
  7. 7.
    Crum-Cianflone N, Ganesan A, Teneza-Mora N, Riddle M, Medina S, Barahona I, Brodine S (2012) Prevalence and factors associated with renal dysfunction among HIV-infected patients. BMC Public Health 12:234.  https://doi.org/10.1186/1471-2458-12-234 CrossRefGoogle Scholar
  8. 8.
    United States Renal Data System (2015) 2015 USRDS annual data report, vol 2. ESRD in the United States. https://www.usrds.org/2015/download/vol2_USRDS_ESRD_15.pdf. Accessed 20 May 2017
  9. 9.
    Patricio ER (2012) HIV-associated nephropathy: a diagnosis in evolution. Nephrol Dial Transplant 27(11):3969–3972CrossRefGoogle Scholar
  10. 10.
    Kiryluk K, Martino J, Gharavi AG (2007) Genetic susceptibility, HIV infection, and the kidney. Clin J Am Soc Nephrol 2:S25–S35.  https://doi.org/10.2215/cjn.00320107 CrossRefPubMedGoogle Scholar
  11. 11.
    Brener ZZ, Kotanko P, Thijssen S, Winchester JF, Bergman M (2010) Clinical benefit of preserving residual renal function in dialysis patients: an update for clinicians. Am J Med Sci 339:453–456CrossRefPubMedGoogle Scholar
  12. 12.
    Frank M, Guarino-Gubler S, Burnier M, Mailard M, Keller F, Gabutti L (2012) Estimation of glomerular filtration rate in hospitalized patients: are we overestimating renal function? Swiss Med Wkly 142:w13708PubMedGoogle Scholar
  13. 13.
    Kimaro GD, Mfinanga S, Simms V, Kivuyo S, Bottomley C, Hawkins N, Harrison TS, Jaffar S, Guinness L (2017) The costs of providing antiretroviral therapy services to HIV-infected individuals presenting with advanced HIV disease at public health centres in Dar es Salaam, Tanzania: findings from a randomized trial evaluating different health care strategies. PLoS ONE 12(2):e0171917CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Van Den Noortgate N, Velghe A, Petrovic M, Vandewiele C, Lameire N, Voet D, Afschrift M (2003) The role of ultrasonography in the assessment of renal function in the elderly. J Nephrol 16:658–662Google Scholar
  15. 15.
    Paleologo G, Abdelkawy H, Barsotti M, Basha A, Bernabini G, Bianchi A et al (2007) Kidney dimensions at sonography are correlated with glomerular filtration rate in renal transplant recipients and in kidney donors. Transplant Proc 39:1779–1781CrossRefPubMedGoogle Scholar
  16. 16.
    Sanusi AA, Arogundade FA, Famurewa OC, Akintomide AO, Soyinka FO, Ojo OE, Akinsola A (2009) Relationship of ultrasonographically determined kidney volume with measured GFR, calculated creatinine clearance and other parameters in chronic kidney disease (CKD). Nephrol Dial Transplant 24:1690–1694CrossRefPubMedGoogle Scholar
  17. 17.
    American College of Radiology Website. ACR practice guideline for the performance of an ultra- sound examination of the abdomen and/or retro-peritoneum (in collaboration with the American Institute of Ultrasound in Medicine AIUM). http://www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines/us/us_abdomen_retro.aspx. Revised 2007. Retrieved 24 Jun 2017
  18. 18.
    Adeyekun AA, Unuigbe EI, Onunu AN, Azubike CO (2011) Renal sonographic parameters in human immunodeficiency virus-infected subjects and relationship to CD4 cell count. Saudi J Kidney Dis Transplant 22(6):1164–1168Google Scholar
  19. 19.
    Igbinedion BO, Marchie TT, Ogbeide E (2009) Trans-abdominal ultrasonic findings correlated with CD4+ counts in adult HIV-infected patients in Benin, Nigeria. SAJR 13(2):34–41CrossRefGoogle Scholar
  20. 20.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT (2014) Evidenced-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth Joint National Committee (JNC 8). JAMA 311(5):507–520.  https://doi.org/10.1001/jama.2013.284427 CrossRefPubMedGoogle Scholar
  21. 21.
    Vanderwerff B, Winter T (2007) Renal failure. In: Sanders RC, Winter TC (eds) Clinical sonography: a practical guide, 4th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 162–187Google Scholar
  22. 22.
    Siddappa JK, Singla S, Al-Ameen M, Rakshith SC, Kumar N (2013) Correlation of ultrasonographic parameters with serum creatinine in chronic kidney disease. J Clin Imaging Sci 3:28.  https://doi.org/10.4103/2156-7514.114809 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    El-Rashaid W, Abdul-Fattah H (2014) Sonographic assessment of renal size in healthy adults. Med Princ Pract 23:432–436CrossRefGoogle Scholar
  24. 24.
    Hriack H, Cruz C, Romanski R, Uniewski MH, Levin NW, Madrazo BL et al (1982) Renal parenchymal disease: sonologic–histologic correlation. Radiology 144:141–147CrossRefGoogle Scholar
  25. 25.
    Kwaifa SI, Bosan IB (2008) Chronic kidney disease in HIV infected patients in North Western Nigeria. Trop J Nephrol 3:23–28Google Scholar
  26. 26.
    Wools-Kaloustian K, Gupta SK, Muloma E, Owino-Ong’or W, Sidle J, Aubrey RW (2007) Renal disease in an antiretroviral-naive HIV-infected outpatient population in Western Kenya. Nephrol Dial Transplant 22:2208–2212CrossRefPubMedGoogle Scholar
  27. 27.
    Dada SA, Olarenwaju TO, Aderibigbe A, Chijioke A, Rafiu MO, Ajayi AO (2015) Prevalence of chronic kidney disease in newly diagnosed patients with human immunodeficiency virus in Ilorin, Nigeria. J Bras Nefrol 37(2):177–184.  https://doi.org/10.5935/0101-2800.20150029 Google Scholar
  28. 28.
    Okeke CE, Mgbor SO, Obikili EN, Aderibigbe OA, Modebe EO, Chukwuka CJ, Mbata GC (2016) Is there a significant renal sonographic difference between HIV/AIDS positives and negatives? A developing country perspective. Br J Med Med Res 13(9):1–9.  https://doi.org/10.9734/BJMMR/2016/23138 CrossRefGoogle Scholar
  29. 29.
    Bain LE, Awah PK, Ngia G, Njem PK, Sigal Y, Nsah B, Ajime TT (2013) Malnutrition in Sub-Saharan Africa: burden, causes and prospects. PAMJ 2013(15):120.  https://doi.org/10.11604/pamj.2013.15.120.2535 Google Scholar
  30. 30.
    Yar’Zever IS, Abubakar U, Toriola AL, Igbokwe NU (2013) Effects of 12 weeks cycle exercise programme on CD4 count and viral load in HIV sero-positive patients in Kano, Nigeria. J AIDS HIV Res 5(11):415–421Google Scholar
  31. 31.
    Denue BA, Wudiri ZW, Stephen M, Agwan SK, Apagu A, Aliyu S (2016) Profile of HIV-1 RNA viral load among HIV-TB co-infected patients in a tertiary health facility in Maiduguri, North-eastern Nigeria. Niger Med Pract 70:1–2Google Scholar
  32. 32.
    Ibinaiye PO, Garko SS, Ahmed A, Tanimu SS, Tahir NM (2016) Relationship of ultrasound renal echogenicity, serum creatinine level and CD4 cell counts in patients with human immunodeficiency virus-associated nephropathy. Sub-Saharan Afr J Med 1:191–197CrossRefGoogle Scholar
  33. 33.
    Ruel TD, Zanoni BC, Ssewanyana I, Cao H, Haivir DV, Kamya D et al (2011) Sex differences in HIV RNA level and CD4 cell percentage during childhood. Clin Infect Dis 53(6):592–599.  https://doi.org/10.1093/cjd/cir484 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S et al (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15:955–959CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kamga HLF, Assob JCN, Njunda AL, Nde Fon P, Nsagha DS, Atanga MBS et al (2011) The kidney function trends in human immunodeficiency virus/acquires immune deficiency syndrome (HIV/AIDS) patients at the Nylon District Hospital, Doula, Cameroon. J AIDS HIV Res 3(2):30–37Google Scholar
  36. 36.
    Atta MG, Longenecker JC, Fine DM, Nagajothi N, Grover DS, Wu J et al (2004) Sonography as a predictor of human immunodeficiency virus associated nephropathy. JUM 23(5):603–610Google Scholar
  37. 37.
    Wyatt CM, Klotman PE, D’Agati VD (2008) HIV-associated nephropathy: clinical presentation, pathology and epidemiology in the era of antiretroviral therapy. Semin Nephrol 28(6):513–522.  https://doi.org/10.1016/j.semnephrol.2008.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Avila-Casado C, Fortoul TI, Chang SS (2010) HIV-associated nephropathy: experimental models. Adv Chronic Kidney Dis 17(1):36–43.  https://doi.org/10.1053/j.ackd.2009.08.012 CrossRefGoogle Scholar
  39. 39.
    Moghazi S, Jones E, Schroepple J, Arya K, McClellan W, Hennigar RA (2005) Correlation of renal histopathology with sonographic findings. Kidney Int 67:1515–1520CrossRefPubMedGoogle Scholar
  40. 40.
    Cain JE, Giovanni VD, Smeeton J, Rosemblum ND (2010) Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment. Pediatr Res 68(2):91–98CrossRefPubMedGoogle Scholar
  41. 41.
    Moorthy HK, Venugopal P (2011) Measurement of renal dimensions in vivo: a critical appraisal. Indian J Urol 27(2):169–175CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB) 2018

Authors and Affiliations

  1. 1.Department of Radiation Biology, Radiotherapy, Radiodiagnosis and Radiography, Faculty of Clinical Sciences, College of MedicineUniversity of LagosLagosNigeria
  2. 2.Department of Medical Radiography and Radiological Sciences, Faculty of Health Sciences and Technology, College of MedicineUniversity of Nigeria, Enugu CampusEnuguNigeria

Personalised recommendations