Journal of Ultrasound

, Volume 20, Issue 1, pp 11–22 | Cite as

Image-guided thermal ablation of benign thyroid nodules

  • Anna Pisani Mainini
  • Cristian Monaco
  • Lorenzo Carlo Pescatori
  • Chiara De Angelis
  • Francesco Sardanelli
  • Luca Maria Sconfienza
  • Giovanni Mauri
Review Article


Benign thyroid nodules are a common disease in the general population. Most often, they are completely asymptomatic and discovered occasionally during routine ultrasound examinations, and do not require any treatment. When thyroid nodules become symptomatic, surgical excision is still considered standard treatment. In the last few years, several experiences in the treatment of benign thyroid nodules through image-guided percutaneous thermal ablation have been reported with encouraging results, so that currently, these treatments are often proposed as first-choice options for patients with symptomatic benign thyroid nodules. In this paper, we discuss the present literature on the topic, focusing on different techniques available for image-guided percutaneous ablation, particularly radiofrequency (RFA), laser (LA), microwave (MWA), and high-intensity-focus ultrasound (HIFU). Little evidence about the efficacy of MWA and HIFU is now available. According to the literature, good results have been obtained with RFA and LA. Regarding RFA, volume reduction after ablative treatment has been found to range from 47 to 84 % at 3–6 months, and from 62 to 93 % at 1 year; LA also seems to be effective in achieving shrinkage of thyroid nodules, with volume reduction from 37 to 81 % at 3–6 months, and from 13 to 82 % at 1-year follow-up. Moreover, applications of advanced image-guidance modality, such as contrast-enhanced ultrasound and virtual navigation with fusion imaging, are discussed.


Laser Radiofrequency Microwave High-intensity focused ultrasound Thyroid nodule 


I noduli benigni della tiroide sono una evenienza comune nella popolazione generale. Più spesso vengono scoperti occasionalmente durante un esame ecografico fatto per altri motivi, sono asintomatici e non richiedono alcun trattamento. Qualora i noduli diventino sintomatici, l’escissione chirurgica è ancora considerato il trattamento standard. Tuttavia, negli ultimi anni, è cresciuta l’esperienza circa il trattamento di tali noduli tramite ablazione percutanea sotto guida ecografica tanto che, attualmente, questo viene spesso proposto come trattamento di scelta. Lo scopo del nostro lavoro è fare una revisione della letteratura riguardante l’argomento, con un particolare focus sulle differenti tecniche attualmente a disposizione, in particolare radiofrequenza (RFA), laser (LA), microonde (MWA) e high-intensity-focus ultrasound (HIFU). Al momento ci sono ancora poche evidenze sull’efficacia di MWA e HIFU. Secondo quanto riportato in letteratura, buoni risultati sono stati ottenuti con RFA e LA. Riguardo la radiofrequenza, la riduzione volumetrica dopo la procedura ablativa va da 47 a 84 % a 3–6 mesi e da 62 a 93 % a 1 anno; anche il laser sembra essere efficace nel causare la riduzione del nodulo, con percentuali che vanno da 37 a 81 % a 3–6-mesi a da 13 a 82 % a 1 anno di follow-up Abbiamo poi discusso brevemente le applicazioni di tecniche di imaging più avanzate, come l’ecografia con mezzo di contrasto e la navigazione virtuale.


Compliance with ethical standards

Conflict of interest

Dr. Anna Pisani Mainini has nothing to disclose; Dr. Cristina Monaco has nothing to disclose; Dr. Lorenzo Carlo Pescatori has nothing to disclose; Dr. Chiara De Angelis has nothing to disclose; Prof. Francesco Sardanelli has nothing to disclose; Prof. Luca Maria Sconfienza has nothing to disclose; and Dr. Giovanni Mauri has nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Vander JB, Gaston EA, Dawber TR (1968) The significance of nontoxic thyroid nodules. Final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med 69:537–540PubMedCrossRefGoogle Scholar
  2. 2.
    Tunbridge WM, Evered DC, Hall R et al (1977) The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf) 7:481–493CrossRefGoogle Scholar
  3. 3.
    Papini E, Pacella CM, Misischi I et al (2014) The advent of ultrasound-guided ablation techniques in nodular thyroid disease: towards a patient-tailored approach. Best Pract Res Clin Endocrinol Metab 28:601–618PubMedCrossRefGoogle Scholar
  4. 4.
    Tan GH, Gharib H (1997) Thyroid incidentalomas: management approaches to non palpable nodules discovered incidentally on thyroid imaging. Ann Intern Med 126:226–231PubMedCrossRefGoogle Scholar
  5. 5.
    Brander AE, Viikinkoski VP, Nickels JI, Kivisaari LM (2000) Importance of thyroid abnormalities detected at US screening: a 5-year follow-up. Radiology 215:801–806PubMedCrossRefGoogle Scholar
  6. 6.
    Frates MC, Benson CB, Charboneau JW et al (2005) Management of thyroid nodules detected at US: society of Radiologists in Ultrasound consensus conference statement. Radiology 237:794–800PubMedCrossRefGoogle Scholar
  7. 7.
    Gharib H, Papini E (2007) Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin North Am 36:707–735PubMedCrossRefGoogle Scholar
  8. 8.
    Guth S, Theune U, Aberle J, Galach A, Bamberger CM (2009) Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest 39:699–706PubMedCrossRefGoogle Scholar
  9. 9.
    Hegedüs L, Bonnema SJ, Bennedbaek FN (2003) Management of simple nodular goiter: current status and future perspectives. Endocr Rev 24:102–132PubMedCrossRefGoogle Scholar
  10. 10.
    Hegedüs L (2004) Clinical practice. The thyroid nodule. N Engl J Med 351:1764–1771PubMedCrossRefGoogle Scholar
  11. 11.
    Filetti S, Durante C, Torlontano M (2006) Nonsurgical approaches to the management of thyroid nodules. Nat Clin Pract Endocrinol Metab 2:384–394PubMedCrossRefGoogle Scholar
  12. 12.
    Gharib H, Hegedüs L, Pacella CM, Baek JH, Papini E (2013) Nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab 98:3949–3957PubMedCrossRefGoogle Scholar
  13. 13.
    Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511PubMedCrossRefGoogle Scholar
  14. 14.
    Na DG, Lee JH, Jung SL (2012) Radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancer: consensus statement and recommendation. Korean J Radiol 13:117–125PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Del Prete S, Caraglia M, Russo D et al (2002) Percutaneous ethanol injection efficacy in the treatment of large symptomatic thyroid cystic nodules: 10-year follow-up of a large series. Thyroid 12:815–821PubMedCrossRefGoogle Scholar
  17. 17.
    Guglielmi R, Pacella CM, Bianchini A et al (2004) Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid 14:125–131PubMedCrossRefGoogle Scholar
  18. 18.
    Sung JY, Kim YS, Choi H, Lee JH, Baek JH (2011) Optimum first-line treatment technique for benign cystic thyroid nodules: ethanol ablation or radiofrequency ablation? AJR Am J Roentgenol 196:W210–W214PubMedCrossRefGoogle Scholar
  19. 19.
    Bennedbaek FN, Hegedüs L (2003) Treatment of recurrent thyroid cysts with ethanol: a randomized double-blind controlled trial. J Clin Endocrinol Metab 88:5773–5777PubMedCrossRefGoogle Scholar
  20. 20.
    Valcavi R, Frasoldati A (2004) Ultrasound-guided percutaneous ethanol injection therapy in thyroid cystic nodules. Endocr Pract 10:269–275PubMedCrossRefGoogle Scholar
  21. 21.
    Tarantino L, Francica G, Sordelli I et al (2008) Percutaneous ethanol injection of hyperfunctioning thyroid nodules: long-term follow-up in 125 patients. AJR Am J Roentgenol 190:800–808PubMedCrossRefGoogle Scholar
  22. 22.
    Papini E, Panunzi C, Pacella CM et al (1993) Percutaneous ultrasound-guided ethanol injection: a new treatment of toxic autonomously functioning thyroid nodules? J Clin Endocrinol Metab 76:411–416PubMedCrossRefGoogle Scholar
  23. 23.
    Tarantino L, Francica G, Sordelli I et al (2008) Percutaneous ethanol injection of hyperfunctioning thyroid nodules: long-term follow-up in 125 patients. AJR Am J Roentgenol 190(3):800–808. doi: 10.2214/AJR.07.2668 PubMedCrossRefGoogle Scholar
  24. 24.
    Brkljacic B, Sucic M, Bozikov V et al (2001) Treatment of autonomous and toxic thyroid adenomas by percutaneous ultrasound-guided ethanol injection. Acta Radiol 42:477–481PubMedCrossRefGoogle Scholar
  25. 25.
    Gibelin H, Sierra M, Mothes D et al (2004) Risk factors for recurrent nodular goiter after thyroidectomy for benign disease: case-control study of 244 patients. World J Surg 28:1079–1082PubMedCrossRefGoogle Scholar
  26. 26.
    Pelizzo MR, Merante Boschin I, Toniato A, Sorgato N, Marzola MC, Rubello D (2010) Surgical therapeutic planning options in nodular goiter. Minerva Endocrinol 35:173–185PubMedGoogle Scholar
  27. 27.
    Hayward NJ, Grodski S, Yeung M, Johnson WR, Serpell J (2013) Recurrent laryngeal nerve injury in thyroid surgery: a review. ANZ J Surg. 83:15–21PubMedCrossRefGoogle Scholar
  28. 28.
    Bergenfelz A, Jansson S, Kristoffersson A et al (2008) Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3,660 patients. Langenbecks Arch Surg 393:667–673PubMedCrossRefGoogle Scholar
  29. 29.
    Nygaard B, Hegedüs L, Nielsen KG, Ulriksen P, Hansen JM (1999) Long-term effect of radioactive iodine on thyroid function and size in patients with solitary autonomously functioning toxic thyroid nodules. Clin Endocrinol (Oxf) 50:197–202CrossRefGoogle Scholar
  30. 30.
    Nieuwlaat WA, Hermus AR, Sivro-Prndelj F, Corstens FH, Huysmans DA (2001) Pretreatment with recombinant human TSH changes the regional distribution of radioiodine on thyroid scintigrams of nodular goiters. J Clin Endocrinol Metab 86:5330–5336PubMedCrossRefGoogle Scholar
  31. 31.
    Goldberg SN, Charboneau JW, Dodd GD 3rd et al (2003) Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology 228:335–345PubMedCrossRefGoogle Scholar
  32. 32.
    Baek JH, Lee JH, Valcavi R, Pacella CM, Rhim H, Na DG (2011) Thermal ablation for Benign Thyroid Nodules: radiofrequency and laser. Korean J Radiol 12:525–540PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim YS, Rhim H, Tae K, Park DW, Kim ST (2006) Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid 16:361–367PubMedCrossRefGoogle Scholar
  34. 34.
    Jeong WK, Baek JH, Rhim H et al (2008) Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 18:1244–1250PubMedCrossRefGoogle Scholar
  35. 35.
    Baek JH, Jeong HJ, Kim YS, Kwak MS, Lee D (2008) Radiofrequency ablation for an autonomously functioning thyroid nodule. Thyroid 18(6):675–676. doi: 10.1089/thy.2007.0274 PubMedCrossRefGoogle Scholar
  36. 36.
    Lee JH, Kim YS, Lee D, Choi H, Yoo H, Baek JH (2010) Radiofrequency ablation (RFA) of benign thyroid nodules in patients with incompletely resolved clinical problems after ethanol ablation (EA). World J Surg 34:1488–1493PubMedCrossRefGoogle Scholar
  37. 37.
    Baek JH, Kim YS, Lee D, Huh JY, Lee JH (2010) Benign predominantly solid thyroid nodule: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. Am Roentgenol 194:1137–1142CrossRefGoogle Scholar
  38. 38.
    Spiezia S, Garberoglio R, Milone F et al (2009) Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 19:219–225PubMedCrossRefGoogle Scholar
  39. 39.
    Deandrea M, Limone P, Basso E et al (2008) US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med Biol 34:784–791PubMedCrossRefGoogle Scholar
  40. 40.
    Faggiano A, Ramundo V, Assanti AP et al (2012) Thyroid nodules treated with percutaneous radiofrequency thermal ablation: a comparative study. J Clin Endocrinol Metab 97:4439–4445PubMedCrossRefGoogle Scholar
  41. 41.
    Baek JH, Moon WJ, Kim YS, Lee JH, Lee D (2009) Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J Surg 33:1971–1977PubMedCrossRefGoogle Scholar
  42. 42.
    Sung JY, Baek JH, Jung SL et al (2015) Radiofrequency ablation for autonomously functioning thyroid nodules: a multicenter study. Thyroid 25:112–117PubMedCrossRefGoogle Scholar
  43. 43.
    Ji Hong M, Baek JH, Choi YJ et al (2015) Radiofrequency ablation is a thyroid function-preserving treatment for patients with bilateral benign thyroid nodules. J Vasc Interv Radiol 26:55–61PubMedCrossRefGoogle Scholar
  44. 44.
    Che Y, Jin S, Shi C et al (2015) Treatment of benign thyroid nodules: comparison of surgery with radiofrequency ablation. AJNR AmJ Neuroradiol 36:1321–1325CrossRefGoogle Scholar
  45. 45.
    Ugurlu MU, Uprak K, Akpinar IN, Attaallah W, Yegen C, Gulluoglu BM (2015) Radiofrequency ablation of benign symptomatic thyroid nodules: prospective safety and efficacy study. World J Surg 39:961–968PubMedCrossRefGoogle Scholar
  46. 46.
    Bernardi S, Dobrinja C, Fabris B et al (2014) Radiofrequency ablation compared to surgery for the treatment of benign thyroid nodules. Int J Endocrinol 2014:934595PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lim HK, Lee JH, Ha EJ, Sung JY, Kim JK, Baek JH (2013) Radiofrequency ablation of benign non-functioning thyroid nodules: 4 years follow-up results for 111 patients. Eur Radiol 23:1044–1049. doi: 10.1007/s00330-012-2671-3 PubMedCrossRefGoogle Scholar
  48. 48.
    Huh JY, Baek JH, Choi H, Kim JK, Lee JH (2012) Symptomatic benign thyroid nodules: efficacy of additional radiofrequency ablation treatment session- prospective randomized study. Radiology 263:909–916PubMedCrossRefGoogle Scholar
  49. 49.
    Sung JY, Baek JH, Kim KS et al (2013) Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology 269:293–300PubMedCrossRefGoogle Scholar
  50. 50.
    Burke DR, Lewis CA, Cardella JF et al (2003) Quality improvement guidelines for percutaneous transhepatic cholangiography and biliary drainage. J Vasc Interv Radiol 14:S243–S246PubMedCrossRefGoogle Scholar
  51. 51.
    Lewis CA, Allen TE, Burke DR et al (1997) Quality improvement guidelines for central venous access. The Standards of Practice Committee of the Society of Cardiovascular and Interventional Radiology. J Vasc Interv Radiol 8:475–479PubMedCrossRefGoogle Scholar
  52. 52.
    Baek JH, Lee JH, Sung JY et al (2012) Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology 262:335–342PubMedCrossRefGoogle Scholar
  53. 53.
    Giovagnorio F, Martinoli C (2001) Sonography of the cervical vagus nerve: normal appearance and abnormal findings. AJR Am J Roentgenol 176:745–749PubMedCrossRefGoogle Scholar
  54. 54.
    Gibson A (1915) Bilateral abnormal relationship of the vagus nerve in its cervical portion. J Anat Physiol 49:389–392PubMedPubMedCentralGoogle Scholar
  55. 55.
    Garberoglio R, Aliberti C, Appetecchia M et al (2015) Radiofrequency ablation for thyroid nodules: which indications? The first Italian opinion statement. J Ultrasound 18:423–430PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K (2010) Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng 38:79–100PubMedCrossRefGoogle Scholar
  57. 57.
    Pacella CM, Bizzarri G, Spiezia S et al (2004) Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 232:272–280PubMedCrossRefGoogle Scholar
  58. 58.
    Pacella CM, Bizzarri G, Guglielmi R et al (2000) Thyroid tissue: US-guided percutaneous interstitial laser ablation-a feasibility study. Radiology 217:673–677PubMedCrossRefGoogle Scholar
  59. 59.
    Achille G, Zizzi S, Di Stasio E, Grammatica A, Grammatica L (2016) Ultrasound-guided percutaneous laser ablation in treating symptomatic benign thyroid nodules: our experience in 45 patients. Head Neck 38:677–682PubMedCrossRefGoogle Scholar
  60. 60.
    Gambelunghe G, Fede R, Bini V et al (2013) Ultrasound-guided interstitial laser ablation for thyroid nodules is effective only at high total amounts of energy: results from a three-year pilot study. Surg Innov 20:345–350PubMedCrossRefGoogle Scholar
  61. 61.
    Døssing H, Bennedbæk FN, Hegedüs L (2011) Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol 165:123–128PubMedCrossRefGoogle Scholar
  62. 62.
    Amabile G, Rotondi M, Pirali B et al (2011) Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules. Lasers Surg Med 43:797–803PubMedCrossRefGoogle Scholar
  63. 63.
    Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM (2010) Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid 20:1253–1261PubMedCrossRefGoogle Scholar
  64. 64.
    Cakir B, Topaloglu O, Gul K et al (2006) Effects of percutaneous laser ablation in benign solitary thyroid nodules on nodule volume, thyroglobulin and anti-thyroglobulin levels, and cytopathology of nodule in 1 yr follow-up. J Endocrinol Invest 29:876–884PubMedCrossRefGoogle Scholar
  65. 65.
    Gambelunghe G, Fatone C, Ranchelli A et al (2006) A randomized controlled trial to evaluate the efficacy of ultrasound-guided laser photocoagulation for treatment of benign thyroid nodules. J Endocrinol Invest 29:RC23–RC26PubMedCrossRefGoogle Scholar
  66. 66.
    Døssing H, Bennedbaek FN, Bonnema SJ, Grupe P, Hegedüs L (2007) Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol 157:95–100PubMedCrossRefGoogle Scholar
  67. 67.
    Papini E, Guglielmi R, Bizzarri G et al (2007) Treatment of benign cold thyroid nodules: a randomized clinical trial of percutaneous laser ablation versus levothyroxine therapy or follow-up. Thyroid 17:229–235PubMedCrossRefGoogle Scholar
  68. 68.
    Døssing H, Bennedbaek FN, Hegedüs L (2006) Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules: one versus three treatments. Thyroid 16:763–768PubMedCrossRefGoogle Scholar
  69. 69.
    Amabile G, Rotondi M, De Chiara G et al (2006) Low-energy interstitial laser photocoagulation for treatment of nonfunctioning thyroid nodules: therapeutic outcome in relation to pretreatment and treatment parameters. Thyroid 16:749–755PubMedCrossRefGoogle Scholar
  70. 70.
    Papini E, Guglielmi R, Bizzarri G, Pacella CM (2004) Ultrasound-guided laser thermal ablation for treatment of benign thyroid nodules. Endocr Pract 10:276–283PubMedCrossRefGoogle Scholar
  71. 71.
    Døssing H, Bennedbaek FN, Hegedüs L (2003) Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid 13:885–888PubMedCrossRefGoogle Scholar
  72. 72.
    Døssing H, Bennedbaek FN, Hegedüs L (2005) Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules—a randomized study. Eur J Endocrinol 152:341–345PubMedCrossRefGoogle Scholar
  73. 73.
    Spiezia S, Vitale G, Di Somma C et al (2003) Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter. Thyroid 13:941–947PubMedCrossRefGoogle Scholar
  74. 74.
    Døssing H, Bennedbaek FN, Karstrup S, Hegedüs L (2002) Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation—initial experience. Radiology 225:53–57PubMedCrossRefGoogle Scholar
  75. 75.
    Pacella CM, Mauri G, Achille G et al (2015) Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab 100:3903–3910PubMedCrossRefGoogle Scholar
  76. 76.
    Yue W, Wang S, Wang B et al (2013) Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: safety and imaging follow-up in 222 patients. Eur J Radiol 82:e11–e16PubMedCrossRefGoogle Scholar
  77. 77.
    Feng B, Liang P, Cheng Z et al (2012) Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies. Eur J Endocrinol 166:1031–1037PubMedCrossRefGoogle Scholar
  78. 78.
    Liang P, Wang Y, Yu X et al (2009) Malignant liver tumor: treatment with percutaneous microwave ablation-complications among cohort of 1136 patients. Radiology 251:933–940PubMedCrossRefGoogle Scholar
  79. 79.
    Liang P, Wang Y, Zhang D et al (2008) Ultrasound guided percutaneous microwave ablation for small renal cancer: initial experience. J Urol 180:844–848PubMedCrossRefGoogle Scholar
  80. 80.
    Wolf FJ, Grand DJ, Machan JT et al (2008) Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247:871–879PubMedCrossRefGoogle Scholar
  81. 81.
    Heck K, Happel C, Grünwald F (2015) Percutaneous microwave ablation of thyroid nodules: effects on thyroid function and antibodies. Int J Hyperthermia 31:560–567PubMedCrossRefGoogle Scholar
  82. 82.
    Korkusuz H, Nimsdorf F, Happel C (2015) Percutaneous microwave ablation of thyroid nodules. Functional imaging in comparison to nodular volume reduction at 3 months of follow-up. Nuklearmedizin 54:13–19PubMedCrossRefGoogle Scholar
  83. 83.
    Korkusuz C, Happel J Klebe (2015) Diagnostic accuracy of elastography and scintigraphic imaging after thermal microwave ablation of thyroid nodules. Rofo 187:353–359PubMedCrossRefGoogle Scholar
  84. 84.
    Klebe J, Happel C et al (2015) Visualization of tissue alterations in thyroid nodules after microwave ablation: sonographic versus scintigraphic imaging. Nucl Med Commun 36:260–267PubMedCrossRefGoogle Scholar
  85. 85.
    Esnault O, Rouxel A, Le Nestour E, Gheron G, Leenhardt L (2010) Minimally invasive ablation of a toxic thyroid nodule by high-intensity focused ultrasound. AJNR Am J Neuroradiol 31(10):1967–1968. doi: 10.3174/ajnr.A1979 PubMedCrossRefGoogle Scholar
  86. 86.
    Esnault O, Franc B, Ménégaux F et al (2011) High-intensity focused ultrasound ablation of thyroid nodules: first human feasibility study. Thyroid 21:965–973PubMedCrossRefGoogle Scholar
  87. 87.
    Kovatcheva RD, Vlahov JD, Stoinov JI, Zaletel K (2015) Benign solid thyroid nodules: US-guided high-intensity focused ultrasound ablation-initial clinical outcomes. Radiology 276:597–605PubMedCrossRefGoogle Scholar
  88. 88.
    Korkusuz H, Fehre N, Sennert M, Happel C, Grünwald F (2015) Volume reduction of benign thyroid nodules 3 months after a single treatment with high-intensity focused ultrasound (HIFU). J Ther Ultrasound 3:4PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Fruehauf JH, Back W, Eierman A et al (2008) High intensity focused ultrasound for a targeted destruction of uterine tissue: experiences from a pilot study using a mobile HIFU unit. Arch Gynecol Obstet 277:143–150PubMedCrossRefGoogle Scholar
  90. 90.
    Rewcastle JC (2006) High intensity focused ultrasound for prostate cancer: a review of the scientific foundation, technology and clinical outcomes. Technol Cancer Res Treat 5:619–625PubMedCrossRefGoogle Scholar
  91. 91.
    Kaiser WA, Pfleiderer SO, Baltzer PA (2008) MRI-guided interventions of the breast. J Magn Reson Imaging 27:347–355PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang L, Zhu H, Jin C et al (2009) High intensity focused ultrasound (HIFU): effective and safe therapy for hepatocellular carcinoma adjacent to major hepatic veins. Eur Radiol 19:437–445PubMedCrossRefGoogle Scholar
  93. 93.
    Illing RO, Kennedy JE, Wu F et al (2005) The safety and feasibility of extracorporeal high intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumors in Western population. Br J Cancer 93:890–895PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kovatcheva RD, Vlahov JD, Shinkov AD et al (2010) High intensity focused ultrasound to treat primary hyperparathyroidism: a feasibility study in four patients. AJR Am J Roentgenol 195:830–835PubMedCrossRefGoogle Scholar
  95. 95.
    Esnault O, Franc B, Chapelon JY et al (2009) Localized ablation of thyroid tissue by high intensity focused ultrasound: improvement of noninvasive tissue necrosis method. Thyroid 19:1085–1091PubMedCrossRefGoogle Scholar
  96. 96.
    Esnault O, Franc B, Monteil JP et al (2004) High intensity focused ultrasound for localized thyroid-tissue ablation: preliminary experimental animal study. Thyroid 14:1072–1076PubMedCrossRefGoogle Scholar
  97. 97.
    Korkusuz H, Fehre N, Sennert M, Happel C, Grünwald F (2014) Early assessment of high-intensity focused ultrasound treatment of benign thyroid nodules by scintigraphic means. J Ther Ultrasound 30:2–18Google Scholar
  98. 98.
    Mauri G, Porazzi E, Cova L et al (2014) Intraprocedural contrast enhanced ultrasound (CEUS) in liver percutaneous radiofrequency ablation: clinical impact and health technology assessment. Insights Imaging 5:209–216PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Prada F, Bene MD, Fornaro R et al (2016) Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 40:E7PubMedCrossRefGoogle Scholar
  100. 100.
    Meloni MF, Smolock A, Cantisani V et al (2015) Contrast enhanced ultrasound in the evaluation and percutaneous treatment of hepatic and renal tumors. Eur J Radiol 84(9):1666–1674PubMedCrossRefGoogle Scholar
  101. 101.
    Cantisani V, Bertolotto M, Weskott HP et al (2015) Growing indications for CEUS: the kidney, testis, lymph nodes, thyroid, prostate, and small bowel. Eur J Radiol 84(9):1675–1684PubMedCrossRefGoogle Scholar
  102. 102.
    Grazhdani H, Cantisani V, Lodise P et al (2014) Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. J Ultrasound 17(1):13–20PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cantisani V, Grazhdani H, Drakonaki E et al (2015) Strain US elastography for the characterization of thyroid nodules: advantages and limitation. Int J Endocrinol 2015:908575PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cantisani V, Lodise P, Grazhdani H et al (2014) Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur J Radiol. 83(3):420–428PubMedCrossRefGoogle Scholar
  105. 105.
    Mauri G, Solbiati L (2015) Virtual navigation and fusion imaging in percutaneous ablations in the neck. Ultrasound Med Biol 41:898PubMedCrossRefGoogle Scholar
  106. 106.
    Turtulici G, Orlandi D, Corazza A et al (2014) Percutaneous radiofrequency ablation of benign thyroid nodules assisted by a virtual needle tracking system. Ultrasound Med Biol 40:1447–1452PubMedCrossRefGoogle Scholar
  107. 107.
    Mauri G, Cova L, De Beni S et al (2015) Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 38:143–151PubMedCrossRefGoogle Scholar
  108. 108.
    Mauri G, De Beni S, Forzoni L et al (2014) Virtual navigator automatic registration technology in abdominal application. Conf Proc IEEE Eng Med Biol Soc 2014:5570–5574PubMedGoogle Scholar
  109. 109.
    Paparo F, Piccardo A, Bacigalupo L et al (2015) Multimodality fusion imaging in abdominal and pelvic malignancies: current applications and future perspectives. Abdom Imaging 40:2723–2737PubMedCrossRefGoogle Scholar
  110. 110.
    Mauri G (2015) Expanding role of virtual navigation and fusion imaging in percutaneous biopsies and ablation. Abdom Imaging 40:3238–3239PubMedCrossRefGoogle Scholar
  111. 111.
    Shin JE, Baek JH, Lee JH (2013) Radiofrequency and ethanol ablation for the treatment of recurrent thyroid cancers: current status and challenges. Curr Opin Oncol 25:14–19PubMedCrossRefGoogle Scholar
  112. 112.
    Mauri G, Cova L, Ierace T et al (2016) Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc Intervent Radiol 39:1023–1030PubMedCrossRefGoogle Scholar
  113. 113.
    Monchik JM, Donatini G, Iannuccilli J, Dupuy DE (2006) Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg 244:296–304PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Mauri G, Cova L, Tondolo T et al (2013) Percutaneous laser ablation of metastatic lymph nodes in the neck from papillary thyroid carcinoma: preliminary results. J Clin Endocrinol Metab 98:E1203–E1207PubMedCrossRefGoogle Scholar
  115. 115.
    Papini E, Bizzarri G, Bianchini A et al (2013) Percutaneous ultrasound-guided laser ablation is effective for treating selected nodal metastases in papillary thyroid cancer. J Clin Endocrinol Metab 98:E92–E97PubMedCrossRefGoogle Scholar

Copyright information

© Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB) 2016

Authors and Affiliations

  • Anna Pisani Mainini
    • 1
  • Cristian Monaco
    • 1
  • Lorenzo Carlo Pescatori
    • 1
  • Chiara De Angelis
    • 1
  • Francesco Sardanelli
    • 2
    • 3
  • Luca Maria Sconfienza
    • 2
    • 4
  • Giovanni Mauri
    • 5
  1. 1.Scuola di Specializzazione in RadiodiagnosticaUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Scienze Biomediche per la SaluteUniversità degli Studi di MilanoMilanItaly
  3. 3.Unità di RadiologiaIRCCS Policlinico San DonatoMilanItaly
  4. 4.Radiologia/Diagnostica per immagini con servizio di radiologia InterventisticaIRCCS Istituto Ortopedico GaleazziMilanItaly
  5. 5.Dipartimento di Radiologia InterventisticaIstituto Europeo di OncologiaMilanItaly

Personalised recommendations