Advertisement

Journal of Ultrasound

, Volume 18, Issue 2, pp 127–133 | Cite as

Feasibility of common carotid artery point of care ultrasound in cardiac output measurements compared to invasive methods

  • Marika GassnerEmail author
  • Keith Killu
  • Zachary Bauman
  • Victor Coba
  • Kelly Rosso
  • Dionne Blyden
Original Article

Abstract

Background

Cardiac output (CO) measurement in the intensive care unit (ICU) requires invasive devices such as the pulmonary artery (PA) catheter or arterial waveform pulse contour analysis (PCA). This study tests the accuracy and feasibility of point of care ultrasound (POCUS) of the common carotid artery to estimate the CO non-invasively and compare it to existing invasive CO measurement modalities.

Methods

Patients admitted to the surgical and cardiothoracic ICU in a tertiary university-affiliated academic center during a 4-month period, with invasive hemodynamic monitoring devices for management, were included in this cohort study. Common carotid artery POCUS was performed to measure the CO and the results were compared to an invasive device.

Results

Intensivists and ICU fellows, using ultrasound of the common carotid artery, obtained the CO measurements. Images of the Doppler flow and volume were obtained at the level of the thyroid gland. Concurrent CO measured via invasive devices was recorded. The patient cohort comprised 36 patients; 52 % were females. The average age was 59 ± 13 years, and 66 % were monitored via PCA device and 33 % via PA catheter. Intraclass correlation coefficient (ICC) analysis demonstrated almost perfect correlation (0.8152) between measurements of CO via ultrasound vs. invasive modalities. The ICC between POCUS and the invasive measurement via PCA was 0.84 and via PA catheter 0.74, showing substantial agreement between the ultrasound and both invasive modalities.

Conclusions

Common carotid artery POCUS offers a non-invasive method of measuring the CO in the critically ill population.

Keywords

Cardiac output Ultrasound Carotid doppler Pulmonary artery catheter Pulse contour analysis Point of care ultrasound 

Abstract

Background

La misurazione della gittata cardiaca (CO) in Unità di Terapia Intensiva (ICU) richiede dispositivi invasivi come il cateterismo dell’arteria polmonare (PA) o l’analisi dell’onda dell’impulso arterioso (PCA). Questo studio si propone di valutare l’accuratezza e la fattibilità dell’ecografia (POCUS) della carotide comune per stimare la CO in modo non invasivo e confrontarla con le modalità esistenti di misurazione della CO effettuate in maniera invasiva.

Metodi

I pazienti ricoverati in terapia intensiva chirurgica e cardiotoracica in un centro accademico, affiliato con l’università, nel corso di un periodo di quattro mesi, sottoposti a dispositivi di monitoraggio emodinamico invasivo sono stati inclusi in questo studio. E’ stata eseguita l’ecografia dell’arteria carotide comune per misurare la CO ed i risultati sono stati confrontati con una tecnica invasiva.

Risultati

Medici di terapia intensiva e borsisti, utilizzando l’ecografia della carotide comune, hanno ottenuto le misurazioni della CO. Immagini del flusso Doppler e di volume sono state ottenute a livello della ghiandola tiroidea. Contemporaneamente è è stata registrata la CO mediante dispositivi invasivi. Il gruppo era costituito da 36 pazienti; Il 52 % erano femmine. L’età media era di 59 ± 13 anni, e il 66 % sono stati monitorati tramite dispositivo PCA e il 33 % tramite catetere PA. L’analisi del coefficiente di correlazione (ICC) ha dimostrato la correlazione quasi perfetta (0,8152) tra le misurazioni della CO con gli ultrasuoni e quelle con modalità invasive. Il ICC tra POCUS e la misurazione invasiva tramite PCA era 0,84 e catetere della PA era 0,74 mostrando sostanziale accordo tra l’ecografia e entrambe le modalità invasive.

Conclusioni

La POCUS dell’arteria carotide comune offre un metodo non invasivo per misurare la CO nel paziente critico.

Notes

Acknowledgments

Sonosite ultrasound equipment grant for the duration of the study.

Conflict of interest

The authors have no conflicts of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). All patients provided written informed consent to enrollment in the study and to the inclusion in this article of information that could potentially lead to their identification. The study was conducted in accordance with all institutional and national guidelines for the care and use of laboratory animals.

References

  1. 1.
    Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K (2013) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2: CD003408. doi: 10.1002/14651858.CD003408.pub3
  2. 2.
    Gershengorn HB, Wunsch H (2013) Understanding changes in established practice: pulmonary artery catheter use in critically III patients. Crit Care Med 41(12):2667–2676PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Killu K, Oropello J, Manasia A (2007) Effect of lower limb compression devices on thermodilution cardiac output measurement. Crit Care Med 35(5):1307–1311CrossRefPubMedGoogle Scholar
  4. 4.
    Le Langlois SP (2007) Focused ultrasound training for clinicians. Crit Care Med 35(5):S138–S143CrossRefGoogle Scholar
  5. 5.
    Moore CL, Copel JA (2011) Point-of-care ultrasonography. N Engl J Med 364:749–757CrossRefPubMedGoogle Scholar
  6. 6.
    Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15(2):214PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Tahmasebpour HR et al (2005) Sonographic examination of the carotid arteries. Radiographics 25(6):1561–1575CrossRefPubMedGoogle Scholar
  8. 8.
    Callow AD, Calvin BE (1995) Vascular surgery: theory and practice. Prentice Hall International, NorwalkGoogle Scholar
  9. 9.
    Uematsu S et al (1983) Measurement of carotid blood flow in man and its clinical application. Stroke 14(2):256–266CrossRefPubMedGoogle Scholar
  10. 10.
    Sinha AK, Cane C, Kempley ST (2006) Blood flow in the common carotid artery in term and preterm infants: reproducibility and relation to cardiac output. Arch Dis Child Fetal and Neonatal Ed 91(1):F31–F35CrossRefGoogle Scholar
  11. 11.
    Sato K et al (2011) The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol 589(11):2847–2856PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Ruesch S, Walder B, Tramèr MR (2002) Complications of central venous catheters: internal jugular versus subclavian access—a systematic review. Crit Care Med. 30(2):454–460CrossRefPubMedGoogle Scholar
  13. 13.
    McGee DC, Gould MK (2003) Preventing complications of central venous catheterization. N Engl J Med 348:1123–1133CrossRefPubMedGoogle Scholar
  14. 14.
    Eicke BM, von Schlichting J, Mohr-Kahaly S (2001) Lack of association between carotid artery volume blood flow and cardiac output. J Ultrasound Med 20:1293–1298PubMedGoogle Scholar
  15. 15.
    Tranmer BI, Keller TS, Kindt GW, Archer D (1992) Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. J Neurosurg 77:253–259CrossRefPubMedGoogle Scholar
  16. 16.
    Keller TS, McGillicuddy JE, LaBond VA, Kindt GW (1985) Modification of focal cerebral ischemia by cardiac output augmentation. J Surg Res 39:420–432CrossRefPubMedGoogle Scholar

Copyright information

© Società Italiana di Ultrasonologia in Medicina e Biologia (SIUMB) 2014

Authors and Affiliations

  • Marika Gassner
    • 1
    Email author
  • Keith Killu
    • 1
  • Zachary Bauman
    • 1
  • Victor Coba
    • 1
  • Kelly Rosso
    • 1
  • Dionne Blyden
    • 1
  1. 1.Division of Trauma and Critical Care/Department of Surgery/Senior StaffHenry Ford HospitalDetroit, MichiganUSA

Personalised recommendations