Advertisement

Is the Diet Industry Disrupting Your Microbiota?

  • Elisa M. Sinibaldi
  • Ana María Zelaya
Metabolism in Tropical Medicine (K Schlosser Montes, Section Editor)
  • 13 Downloads
Part of the following topical collections:
  1. Topical Collection on Metabolism in Tropical Medicine

Abstract

Purpose of Review

Gut microbes are essential to human health and dietary patterns can influence bacterial diversity and abundance, resulting in either health or disease. Here, we review if high-fat diets motivated by the diet industry can result in disruption of microbiota, which in turn leads to disease.

Recent Findings

A high-fat diet induces microbiota dysbiosis, which is related to obesity and chronic diseases. Some mechanisms include higher bile acid secretion, which conduct its detergent effect on bacterial cell membranes, inducing the loss of non-bile-resistant species. In addition, by adopting a low-carbohydrate dietary pattern, microorganisms are deprived from short-chain fatty acids.

Summary

Evidence shows that a high-fat diet can unchain dysbiosis resulting in chronic illness and obesity.

Keywords

Microbiota Dysbiosis Keto High-fat diet Chronic disease Intestinal integrity 

Abbreviations

BMI

body mass index

CNS

central nervous system

HFD

high-fat diet

KD

ketogenic diet

LPL

lipopolysaccharides

MD

Mediterranean diet

SCFAs

short-chain fatty acids

TJs

tight junctions

TMAO

TMA-N-oxide

VLCD

very low–carbohydrate diet

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    HJ F, KP S, Louis P, SD. Role of the gut microbiota in nutrition and health. Br Med J. 2018;36(1):36–44.Google Scholar
  2. 2.
    Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9(9):560–9.Google Scholar
  3. 3.
    Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.CrossRefGoogle Scholar
  4. 4.
    Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano D, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(14):1-22.CrossRefGoogle Scholar
  5. 5.
    Dreyer JL, Liebl AL. Early colonization of the gut microbiome and its relationship with obesity. Hum Microbiome J. 2018;10(September):1–5.CrossRefGoogle Scholar
  6. 6.
    Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.CrossRefGoogle Scholar
  7. 7.
    Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ, Bushman FD, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(January):8–16.CrossRefGoogle Scholar
  8. 8.
    Tidjani M, Lagier J, Raoult D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum Microbiome J. 2016;1:3–11.CrossRefGoogle Scholar
  9. 9.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.CrossRefGoogle Scholar
  10. 10.
    Derrien M, Vaughan EE, Plugge CM, De Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.CrossRefGoogle Scholar
  11. 11.
    Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome. 2016;4(15):1-12.Google Scholar
  12. 12.
    WHO. Obesity and overweight [Internet]. 2018 [cited 2019 Jun 22]. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
  13. 13.
    Chang ML, Nowell A. How to make stone soup: is the “Paleo diet” a missed opportunity for anthropologists? Evol Anthropol. 2016;231:228–31.CrossRefGoogle Scholar
  14. 14.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.CrossRefGoogle Scholar
  15. 15.
    Statovci D, Aguilera M, MacSharry J, Melgar S. The impact of western Diet and Nutrients on the Microbiota and immune Response at Mucosal interfaces. Front Immunol. 2017;8:1–21.Google Scholar
  16. 16.
    Genoni A, Christophersen CT, Lo J, Coghlan M, Boyce MC, Bird AR, et al. Long‑term Paleolithic diet is associated with lower resistant starch intake, diferent gut microbiota composition and increased serum TMAO concentrations. Eur J Nutr. 2019;1–14.Google Scholar
  17. 17.
    Raynor HA, Champagne CM. Position of the Academy of Nutrition and Dietetics: interventions for the treatment of overweight and obesity in adults. J Acad Nutr Diet. 2016;116(1):129–47.CrossRefGoogle Scholar
  18. 18.
    Martin CK, Rosenbaum D, Han H, Geiselman PJ, Wyatt HR, Hill JO, et al. Change in food cravings, food preferences, and appetite during a low-carbohydrate and low-fat diet. Obesity. 2009;19(10):1963–70.CrossRefGoogle Scholar
  19. 19.
    Brinkworth GD, Noakes M, Buckley JD, Keogh JB, Clifton PM. Long-term effects of a very-low-carbohydrate weight loss diet compared with an isocaloric low-fat diet after 12 m. Am J Clin Nutr. 2009;90(1):23–32.CrossRefGoogle Scholar
  20. 20.
    Bueno NB, De Melo ISV, De Oliveira SL, Da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(7):1178–87.CrossRefGoogle Scholar
  21. 21.
    Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3(2):175–92.CrossRefGoogle Scholar
  22. 22.
    Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789–96. Available from:.  https://doi.org/10.1038/ejcn.2013.116.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Alessandro AD, De Pergola G. The Mediterranean diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int J Food Sci Nutr. 2018;0(0):1–13.Google Scholar
  24. 24.
    Shen J, Wilmot KA, Ghasemzadeh N, Molloy DL, Burkman G, Mekonnen G, et al. Mediterranean dietary patterns and cardiovascular health. 2015.CrossRefGoogle Scholar
  25. 25.
    Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128(3):229–38.CrossRefGoogle Scholar
  26. 26.
    Guilleminault L, Williams EJ, Scott H, Berthon B, Jensen M, Wood LG. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients. 2017;9(1227):1–25.CrossRefGoogle Scholar
  27. 27.
    Mellberg C, Sandberg S, Ryberg M, Eriksson M, Brage S, Larsson C, et al. Long-term effects of a Palaeolithic-type diet in obese postmenopausal women: a two-year randomized trial. Eur J Clin Nutr. 2014;68(3):350–7.CrossRefGoogle Scholar
  28. 28.
    Kossoff EH, Turner Z, Deorrer S, Cervenka M, Henry B. The ketogenic and modified Atkins diet. Sixth. New York: McNaughton & Gunn; 2016.Google Scholar
  29. 29.
    Riaz Rajoka MS, Shi J, Mehwish HM, Zhu J, Li Q, Shao D, et al. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci Human Wellness. 2017;6(3):121–30.CrossRefGoogle Scholar
  30. 30.
    Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015;18(5):515–20.CrossRefGoogle Scholar
  31. 31.
    Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms. 2019;1–14.Google Scholar
  32. 32.
    Capaldo CT, Powell DN, Kalman D. Layered defense: how mucus and tight junctions seal the intestinal barrier. J Mol Med. 2017;95(9):927–34.CrossRefGoogle Scholar
  33. 33.
    Rohr MW, Narasimhulu CA, Rudeski-rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr. 2019;00:1–15.Google Scholar
  34. 34.
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci. 2010;107(33):14691–6.CrossRefGoogle Scholar
  35. 35.
    Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):1–6.CrossRefGoogle Scholar
  36. 36.
    Rohr MW, Narasimhulu CA, Rudeski-rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Adv Nutr. 2019;00:1–15.Google Scholar
  37. 37.
    T.-C.D. S. Diet and gut microbiota in health and disease. Vol. 88, Nestle Nutrition Institute workshop series. 2017. p. 117–26.Google Scholar
  38. 38.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–65. Available from:.  https://doi.org/10.1038/nature09922.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr Diab Rep. 2017;17(3):16.CrossRefGoogle Scholar
  40. 40.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance Auré lie Waget, 1 Evelyne Delmé e, 2 Bé atrice Cousin. Diabetes. 2007;56(July):1761–72.CrossRefGoogle Scholar
  41. 41.
    Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172–84.CrossRefGoogle Scholar
  42. 42.
    Klement RJ, Pazienza V. Treatment, Impact of Different Types of Diet on Gut Microbiota Profiles and Cancer Prevention and. Medicina. 2019;1–10.Google Scholar
  43. 43.
    Reddel S, Putignani L, Del Chierico F. The impact of low-FODMAPs, gluten-free, and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients. 2019;11(2):1–16.CrossRefGoogle Scholar
  44. 44.
    Porter NT, Martens EC. The critical roles of polysaccharides in gut microbial ecology and physiology. Annu Rev Microbiol. 2017;71(1):349–69.CrossRefGoogle Scholar
  45. 45.
    Yang BG, Hur KY, Lee MS. Alterations in gut microbiota and immunity by dietary fat. Yonsei Med J. 2017;58(6):1083–91.CrossRefGoogle Scholar
  46. 46.
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21.CrossRefGoogle Scholar
  47. 47.
    UNESCO. Mediterranean diet [Internet]. [cited 2019 Aug 8]. Available from: https://ich.unesco.org/en/RL/mediterranean-diet-00884. https://ich.unesco.org/en/RL/mediterranean-diet-00884.
  48. 48.
    Bailey MA, Holscher HD. Microbiome-mediated effects of the Mediterranean diet on inflammation. Adv Nutr. 2018;9(3):93–206.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elisa M. Sinibaldi
    • 1
  • Ana María Zelaya
    • 1
  1. 1.GuatemalaGuatemala

Personalised recommendations